
Forms Builder Version 3.6.1
Help Guide

January 2020

Campus Management Corp.
5201 North Congress Avenue
Boca Raton, FL 33487
Main: +1.561.923.2500
Support: +1.800.483.9106
www.campusmanagement.com

© 2020 Campus Management Corp. All rights reserved. Campus Management Corp., Campus Management, the Campus
Management logo, CampusNexus, and the CampusNexus logo are trademarks or service marks of Campus Management
Corp. and/or its affiliates, and may be registered in the U.S., other countries, or both. Other third-party trademarks or ser-
vice marks are property of their respective owners. Information is subject to change.

CONFIDENTIALITY NOTICE:
The information contained in this document is confidential. It is the property of Campus Management Corp. and shall not
be used, disclosed or reproduced without the express written consent of Campus Management.

Revision History
Rev. Date Description

01 July 2019 Initial release of document for Forms Builder Version 3.6
See What's New.

02 August 2019 Updates for Forms Builder Version 3.6.1
See What's New.

03 January 2020 Corrections to CampusNexus CRM Entities.

Forms Builder Version 3.6.1 3 Help Guide

Contents

Get Started 22

Welcome to Forms Builder Help 22

What's New 23

Version 3.6.1 23

Resolutions 23

Version 3.6.0 23

Accessibility 23

Form Designer 24

Sequence Designer 25

Settings 26

Workflow 26

Renderer 26

Logging 26

Known Limitations 27

Installation 27

Troubleshooting 27

Resources 27

Known Limitations 28

DateTime Values in PDF 28

Breaking Change: Variables no longer allowed as Model Values 28

formInstance.UserInfo not populated when using Azure AD 28

Import/Export 28

Creating Forms 28

Payment Country in Credit Card Payment Component 28

Using Multiselect for Single Property Collections 28

Entities in "Show All" List Not Fully Defined 29

Forms Builder Version 3.6.1 4 Help Guide

Rendering Sequences 29

Accessing the Sequence List 29

Managing/Modifying Workflow Definitions 29

Student Address Changes 29

Miscellaneous 30

Limitations for Mobile Devices 30

Required Skills 31

Prerequisite Knowledge 31

Advanced Forms Builder and Workflow Development 31

About Forms Builder 3.x 32

Database Providers and Authentication 32

Workspaces 32

Form Designer 34

Sequence Designer 35

Export/Import 35

Internationalization 36

Custom Content 36

Settings 36

Basic Steps 37

Installation 40

Set Up the Database Environment 41

CampusNexus CRM Environment 41

Verify the Setup 42

CampusNexus Student Environment 42

Verify the Setup 43

CampusNexus CRM and CampusNexus Student Environment 43

CampusNexus CRM Integrations 44

Prerequisites 44

Integrate Forms Builder 3.x with CampusNexus CRM 11.1 or Later 44

Integrate Workflow Composer with CampusNexus CRM 11.1 or Later 45

Forms Builder Version 3.6.1 5 Help Guide

Run an OData Query in the Web Client 45

View Lookup Query Results 46

API Keys 47

Using Earlier Product Versions 47

Update Forms Builder URLs (HTTPS or HTTP) 49

Apply a New SSL Certificate to STS 51

Upgrade Considerations 52

Save Default Forms 52

Preserve Custom Files 52

Best Practices for a Successful Go-Live 53

Logging 53

Workflows 54

Form Data 56

DocuSign Sequences 56

Application Initialization 57

Persisted Workflow Instances 58

Designer 61

Form Designer 62

Form Properties 68

Unsaved Changes Dialog 68

Form Property Settings Pane 68

Fields 71

Select the Database Provider 71

Find Fields in an Entity 72

Search for Fields 73

Show All Fields 73

Components 74

Binding 75

SerializableDynamicObject 79

Dynamic Objects 79

Forms Builder Version 3.6.1 6 Help Guide

Serializable Objects 79

Dictionary Objects 79

Calendar/Scheduler 80

Creating a Minimal Calendar/Scheduler 99

Calendar/Scheduler Initialized by Model Data 103

Calendar/Scheduler Initialized by OData Query 108

CAPTCHA 110

Prerequisites 110

Properties 112

Checkbox 113

Credit Card Payment 117

Credit Card Payment Component Properties 117

Payment Processing with PayPal 125

Payment Processing with ACI 135

Payment Processing with IATS 137

Date Picker 139

Date Time Picker 145

DocuSign 151

Properties 151

Working with the DocuSign Component 152

Localization of DocuSign Sequences 156

Allow Sequential Signing 156

Drop-down List 157

Drop-down List with Value List 165

Drop-down List with Workflow Initialized List 169

Drop-down List with Workflow Initialized List via ExecuteQuery 173

Drop-down List with Workflow Initialized List and Template 179

Expand/Collapse Panel 182

Properties 183

File Upload 186

Forms Builder Version 3.6.1 7 Help Guide

Grid 191

Grid Property Settings 192

Grid Columns Properties 196

Grid Initialized via OData Query 212

Grid Bound to an Entity 215

Grid Bound to Custom Model Data (non-Entity) 217

Grid Bound to Results of ExecuteODataQuery 222

CRM Grid for One-to-Many Relationships 226

HTML 233

Properties 233

Access Model Values Using JavaScript 234

DatePicker Widget 236

Set Default Values for Form Fields 237

Hyperlink 240

Properties 240

IFrame 242

Properties 243

JSON Debug Info 245

Properties 246

Label 248

Properties 248

Modify the CSS for the Label 249

Locale 251

Properties 251

Locale Assignment Using Workflow 253

Masked Text Box 254

Multiselect 259

Custom Multiselect with Value List 266

Custom Multiselect with Workflow Initialized List 270

Numeric Text Box 274

Forms Builder Version 3.6.1 8 Help Guide

Popup 280

Properties 281

Progress Bar 284

Properties 285

Use Case: Compare Numeric Data 287

Radio Button 289

Properties 291

Specify a Default Selection 293

Create a Validation Item 294

Repeater 295

Single-select Search 303

TabStrip 310

Properties 311

Create a TabStrip 312

Text Box 313

Textarea 320

Time Picker 324

Tooltip 329

Properties 330

Typeahead 333

View Summary 338

Properties 340

Form Sections 344

Style Form Sections Within a Form 344

Visible Property 347

Layout Enhancements 347

Reusable Form Sections 348

Create and Save a Form Section 348

Edit a Form Section 350

Add a Form Section to a Form 351

Forms Builder Version 3.6.1 9 Help Guide

Edit a Form Section in a Form 351

Delete a Form Section 353

Delete a Form Section from a Form 353

School Defined Fields 354

Control Property Settings 358

Binding Properties 358

Notation for Array Variables 358

AngularJS Expression Sandbox Security 359

Database Tables for Property Settings 359

Update of Properties 359

Editable Properties 359

Multiselect for Single Property Collections 364

Ethnicities List 364

Programs List 366

Custom Styles 369

Date Formats 374

Example 1: Admissions Deposit - Received Date Field 374

Example 2: Date Picker Component 375

Date & Time Values and Offsets 376

Known Limitations for DateTime Localization 377

Delete Forms 379

Validation on Form Save 380

Boolean Properties 380

Model Property 380

Validation Errors for School Defined Fields 382

Validation Error for Id Property on File Upload 382

HTML Syntax Checking 382

Indeterminate Flags 383

Copy and Paste Controls 384

Limitations 385

Forms Builder Version 3.6.1 10 Help Guide

Sequence Designer 386

Open the Workflow for a Sequence 394

Welcome and Confirmation Forms 395

Create a Custom Welcome Form 395

Create a Custom Confirmation Form 396

Themes 398

Configure Themes 399

Apply a Theme to a Sequence 401

Sequence Identifier 403

Assign a Sequence Identifier to a Sequence 404

Create a Unique Sequence Identifier 405

Delete Sequences 406

Delete Persisted Workflow Instances 407

Delete Sequence Instances 407

Delete All Instances 408

Export/Import 409

Prerequisites 409

Export Sequences 409

Import Sequences 411

Internationalization 413

Definitions 413

Internationalization and Localization in Forms Builder 413

Culture Scripts for Kendo Components 414

Localization of DocuSign Forms 415

Steps to Localize Sequences 416

Custom Content 423

Settings 427

Workflows 433

Workflow Activities for Forms Builder 434

CreateDocuSignRequest 435

Forms Builder Version 3.6.1 11 Help Guide

Properties 435

GetAttachments 438

Properties 439

GetDocuSignConfig 441

Properties 442

GetDocuSignRecipientStatus 444

Multi Route Workflow Example 444

Properties 451

GetSignedDocument 453

Properties 453

LookupUser 455

Properties 456

PrintUrlToPdf 458

TranslateText 466

Properties 467

VerifyCardPayment 469

Properties 472

WaitForFormBookmark 473

State Machine Workflows 476

States 476

Transitions 480

Shared Trigger Transitions 482

Multi Route Forms 484

Step 1: Create forms for the sequence 484

Step 2: Build the sequence 486

Step 3: Define transitions in Workflow Composer 486

Step 4: Render and test the sequence 493

Update a Form After Creation of a Sequence 495

Adding an Entity to a Workflow 495

Link a Portal Account to a Student Record 498

Forms Builder Version 3.6.1 12 Help Guide

Create, Get, and Save Entity Activities 505

CreateEntity<> 505

GetEntity<> 505

SaveEntity<> 507

Best Practice to Prevent DbUpdateConcurrency Exceptions 508

Custom Validations 510

Single Validation 510

Placement of the Custom Validation 512

Multiple Validations 513

Multiple Validations Items When Processing a Grid 518

Passing Values to an End State Form 525

Example 525

Workflows for CampusNexus CRM 527

CampusNexus CRM Events and Objects 527

Workflow Activities for CampusNexus CRM 527

Grid Using Entity Collection Activities 529

Add, Edit, and Save Records in a Collection 529

Renderer 539

Sequence List 540

Redirects for Rendered Sequences 542

Anonymous Sequences 542

Authenticated Sequences 542

Default Navigation Paths within Sequences 543

Preview and Update a Form/Sequence 545

Renderer Authentication 546

Azure AD Authentication 547

Azure AD Claims 557

Link Sequences to Portal Document Center 559

Update Documentation Links in Portal 559

Associate Document Statuses with Documents 560

Forms Builder Version 3.6.1 13 Help Guide

Embed a Form on a Website 561

Procedure 561

Renderer URL Query Parameter 563

Syntax 563

Pass a URL Query Parameter to a Workflow 563

Example 563

Pass "addonQueryParams" via the URL 565

Example 565

Renderer Media Variables 567

Multiple Renderer URLs 568

Multiple Renderer URLs for Multiple Student STS Instances 569

Add a Custom Theme to Settings 570

Add Custom Style Sheets to Renderer 571

Associate Sequences with a Custom Theme 574

Select Style Sheets Using Workflow Activities 574

Renderer Connection Strings 578

Use Cases 579

Request for Information Form 580

Build the Form 580

Create a Query in the Web Client 590

Add the Query to the Form 592

Create a Sequence 593

Edit the Workflow 594

Submit the RFI Form 604

Validate the Data in the Web Client 605

Check the Renderer Log 606

FERPA Form 607

Build the Form 607

Create a Sequence 612

Edit the Workflow 613

Forms Builder Version 3.6.1 14 Help Guide

Validate the Data in the Web Client 620

Submit the Release of Information Form 621

Confirm the Updates in the Web Client 623

Check the Renderer Log 623

Credit Card Payment Form 624

Prerequisites 624

Create the Form Sequence 624

Modify the Workflow 637

Test the Rendered Sequence 644

DocuSign Forms 648

DocuSign Settings 649

DocuSign Workflow Sample - Single Signer 651

Prerequisites 651

Enhancements in Forms Builder 3.6 651

Create the Workflow 652

DocuSign Workflow Sample - Multiple Signers 668

Prerequisites 668

Enhancements in Forms Builder 3.6 670

Test the Multiple Signer Feature 670

Set Up DocuSign Account Preferences 671

Create the Workflow 671

Move from Test to Production 689

Log into DocuSign 690

Manage Tab 690

Permissions 691

API and Integrator Key Information 692

Troubleshooting 694

Basics 695

Log Files 696

Enhanced Logging in Forms Builder 3.4 and Later 696

Forms Builder Version 3.6.1 15 Help Guide

Best Practices for Logging 698

Location of Log Files 698

Forms Builder Logs 698

Event Logs 699

LogLine/LogObject Activities 699

Common Errors and Solutions 700

Logging in Azure 704

Best Practices for Logging 705

LogLine/LogObject Activities 705

Troubleshoot Workflows 707

Workflow Definition Is Not Displayed 707

Workflow Error Indication on Rendered Forms 707

Common Workflow Errors 707

Validation Messages 711

Assign Ids 712

SQL Query to Determine the UserName for a Persisted Workflow 713

Troubleshoot Fields and Components 714

Validation Error on Text Boxes 714

Invalid Property Names in Grids 714

Troubleshoot Rendered Sequences 716

Workflow Error on Rendered Forms 716

Server Error - Workflow Aborted 716

Forms are Skipped 717

DocuSign Document is Blank 717

Disappearing Grid Rows on Edit 717

Slow Loading of Authenticated Sequences 718

Visually Examine Data in Renderer 719

Debug - Show Generated JSON Model 719

DbUpdateConcurrency Exception 721

Access Denied Error 721

Forms Builder Version 3.6.1 16 Help Guide

Troubleshoot DocuSign Forms 722

Write the PDF to Disk 722

Error Code "TAB_OUT_OF_BOUNDS" 722

DocuSign Document is Blank 723

PrintUrlToPdf Times Out 724

Hyperlinks Display with Target URL in Parentheses 724

HTTP Status Codes 725

4xx Client Errors 725

5xx Server Errors 725

Installation Errors Related to CRM Contracts.dll 726

Test Web Services for Designer and Renderer 727

Developer Tools 729

Console 729

DOM Explorer (IE) / Elements (Chrome) 729

Fiddler 730

Forms Builder & Workflow Troubleshooting Tips & Tricks 731

Resources 732

MyCampusInsight 732

GitHub 732

Knowledge Base 733

Angular JS 735

Angular JS Resources 735

Validation Regex Property in Forms Builder 736

Understanding OData 737

Data Model 737

Command Model 738

Query Model 739

OData Queries 739

Rest APIs - Swagger 741

Log File Locations & Names 744

Forms Builder Version 3.6.1 17 Help Guide

Forms Builder 744

Workflow Saved Events 744

Workflow Saving Events 744

Web Client 745

Workflow Composer 746

Azure Storage Explorer 746

Tips 751

Best Practices for Logging 751

LogObject 752

LogLine 753

CampusLink web.config File 753

Reading Log Files 754

Service Module Host 756

When is Service Module Host Used? 759

V1 Contracts 759

V2 Contracts 760

Forms Builder 761

Task Scheduler Occurrence Event 761

API Errors 763

API Password 763

API User Permissions 765

API Key – Access Denied Error 767

Forms Builder Access Errors 769

Web Client URL 769

CMCDataServices URL 770

Activity Errors 771

Configuration Issues 775

Packages 775

Connection Strings 776

Email Configuration 777

Forms Builder Version 3.6.1 18 Help Guide

JSON Debug 778

Workflow Execution 780

Task Scheduler Occurrence Event 780

Prior to CampusNexus Student 20.0 780

CampusNexus Student 20.0 and Forward 782

Workflow Validation of Business Process in Web Client 785

Resources 789

OData Queries 790

Build Queries Using Views for CampusNexus Student 791

Create a View and Export a Query 791

Populate the Lookup Query in Form Designer 793

Build Queries Using the Data Model 795

View the Metadata 795

Example: Student Entity Metadata (Excerpt) 795

Execute a Query 796

Modify a Query 797

Change the Sort Order 797

Remove the "select" Option 797

Use the "$expand" Option for Navigation Properties 797

Change the "$filter" Option 798

Build a Cascading Query Using AngularJS 798

OData Syntax Reference 798

Populate the Lookup Query in Form Designer 799

Run Queries in Web Client for CampusNexus CRM 801

Build Queries for Occupation Insight 802

Rendered Form 802

Form Layout 802

Drop-down List - States 803

Drop-down List - Occupations 805

Grid - SalariesByState 807

Forms Builder Version 3.6.1 19 Help Guide

Grid - OccupationStateProjections 809

Exposed Events 812

Cheat Sheets 821

GitHub Repositories 822

CampusNexus CRM Entities 823

Contact 824

Lead 825

CampusNexus Student Entities 826

Admissions Deposit 827

Applicant Areas of Study 828

Applicants 829

Document 830

Document Transcript Request 832

ISIR Verification 833

Pending Applicant 834

Pending Applicant Area of Study 839

Pending Applicant Ethnicity 840

Pending Applicant Previous Education 841

Pending Prospect Inquiry 842

Pending Prospect Inquiry Ethnicity 845

Prospect Inquiry 846

Prospect Inquiry Lead Source 847

Prospect Inquiry Program of Interest 848

Student 849

Student Address Changes 852

Student Advisor 854

Student Agency Branch 855

Student Area of Study 856

Student Athletic Detail 857

Student Course 858

Forms Builder Version 3.6.1 20 Help Guide

Student Credit Card 859

Student Disability Detail 860

Student Enrollment Period 861

Student Ethnicity 863

Student Extra Curricular Activity 864

Student Ledger Card Transaction 865

Student Previous Education 866

Student Relationship Address 868

Student Service Type 870

Student Transfer Credit 871

Student Veteran Detail 873

Student_Staff Picture 874

Forms Builder Version 3.6.1 21 Help Guide

Forms Builder Version 3.6.1 22 Help Guide

Get Started

Welcome to Forms Builder Help
Forms Builder is a web-based application for the creation, design, publication, and management of form workflows.
It enables organizations to customize complex processes without the need for expensive programming, custom web
design, or service costs. Forms Builder enables users to create forms for every constituent at the institution: new
applicants, existing students, faculty, and staff. Forms Builder enables users to build forms that can be used multiple
times across any campus.

Target users include IT staff who respond to business requests for adjustments in applicant processes, or business
users who work directly with their administrative staff to build and deploy custom processes.

Important Information for Forms Builder 2.x Users

Forms Builder 3.x is a new product that can run parallel with Forms Builder 2.x without any conflict allowing insti-
tutions to transition from Forms Builder 2.x to Forms Builder 3.x at their own pace. There is no upgrade from Forms
Builder 2.x to Forms Builder 3.x. Any forms/sequences built in Forms Builder 2.x need to be built from scratch in
Forms Builder 3.x.

Forms Builder 3.x no longer uses a separate database, but instead the Forms Builder/Workflow tables are stored in
the database of the host application, that is, CampusNexus Student or CampusNexus CRM. If an institution uses
Forms Builder 3.x for both CampusNexus CRM andCampusNexus Student, the Forms Builder/Workflow tables
will reside in only one of the host application's databases.

This help system supports the current Forms Builder version and two prior versions. Help topics that have been
added or modified display a version selector at the top of the topic. Use the version selector to reveal help content
associated with prior versions.

Related Help Systems

https://help.campusmanagement.com/Content/Home.htm

http://www.mycampusinsight.com/Documentation-Center/Help/Help_Home/Content/helphome.htm (logon
required)

https://help.campusmanagement.com/Content/Home.htm
http://www.mycampusinsight.com/Documentation-Center/Help/Help_Home/Content/helphome.htm

Forms Builder Version 3.6.1 23 Help Guide

What's New

Version 3.6.1
Forms Builder 3.6.1 Release Notes (logon required)

Resolutions

l Custom themes are no longer overwritten when upgrading Forms Builder.

Available Bootstrap themes are installed on the Forms Builder server; however, they are no longer auto-
matically added to the Bootstrap themes in Settings. For more information, see Themes.

l Drop-down lists no longer allow a user to specify values that are not part of the given drop-down selections. A
user can only select a value from the given list or type characters to narrow down the displayed drop-down
selections.

l The issues encountered with DocuSign sequences were related to the transitions in the WaitForFormBook-
mark activity. The auto-redirect depends on a forward direction in the WaitForFormBookmark activity in the
transition after the DocuSign redirect state (typically Default-Frame), in particular if DisplayName has been
modified.

o If there is only a single button and DisplayName has been customized but Transition Type was left as
"Default", the auto-redirect now functions properly and moves forward to next form state.

o If there are two buttons and DisplayName(s) have been customized but Transition Type was left as
"Default", the auto-redirect will assume the rightmost button (alphabetically last) is the transition for
next state.

Best Practice is always to specify Display Order and Transition Type (“MoveForward” or “MoveBack”) when
button Display Name(s) have been customized so behavior is known. The Transition Type of Default was kept
for compatibility for forms built prior to Transition Type being available on WaitForFormBookmark with
default Display Names "Next" and "Back".

Version 3.6.0
Forms Builder 3.6.0 Release Notes (logon required)

Accessibility

Forms Builder (Designer and Renderer) underwent an accessibility compliance assessment in accordance with the
provisions and guidelines set forth in Section 508 and WCAG 2.1 at the Level AA standard. The non-conformant test
findings were corrected. The color scheme and branding was aligned with other CampusNexus products.

http://www.mycampusinsight.com/support/Release Notes/Content/FB/FB_3.6.1.htm
http://www.mycampusinsight.com/support/Release Notes/Content/FB/FB_3.6.0.htm

Forms Builder Version 3.6.1 24 Help Guide

Form Designer

New Tile:

l Custom Content

New Components:

l Expand/Collapse Panel
l Popup
l Repeater
l TabStrip

Enhanced Components:

l Credit Card Payment: New properties Payment Disabled and Payment Disabled Reason.

l Calendar/Scheduler:

o New Schema Model property.

o Functionality to add an event to an editable calendar. When an empty week day is clicked
in an editable calendar, the "Add" popup is displayed to enter a new calendar entry using
the Edit Template property.

o Renamed "Edit Confirmation" property to "Delete Confirmation".

o Updated the default template for the Edit Template and Schema Model properties to
handle validations for all fields. The default template can now be fully customized.
Revised example in Calendar/Scheduler Initialized by Model Data.

l DocuSign: values added to the Type property: Approve, Attachment, Checkbox, Company, Date,
Decline, Email, Email Address, Envelope Id, Number, Ssn, and Text. These values enable addi-
tional signers (other than the primary signer) to fill out data on the form.

The RoutingOrder attribute on the DocuSignRecipient entity is now available to specify the sign-
ing order in DocuSign sequences for multiple signers. For more information, see Allow Sequen-
tial Signing.

The DocuSign component provides an automatic transition (auto-redirect) from the Default-
Frame form to the confirmation form after a successful DocuSign session. The auto-redirect
obsoletes the "DocuSign Confirmation Message Text" setting.

The auto-redirect depends on a forward direction in the WaitForFormBookmark activity in the
transition after the DocuSign redirect state (typically Default-Frame), in particular if Dis-
playName has been modified.

l If there is only a single button and DisplayName has been customized but Transition
Type was left as "Default", the auto-redirect moves forward to next form state.

https://help.campusmanagement.com/FB/3.x/Content/DocuSignComponent.htm#Allow
https://help.campusmanagement.com/FB/3.x/Content/DocuSignComponent.htm#Allow

Forms Builder Version 3.6.1 25 Help Guide

l If there are two buttons and DisplayName(s) have been customized but Transition Type
was left as "Default", the auto-redirect will assume the rightmost button (alphabetically
last) is the transition for next state.

Best Practice is always to specify Display Order and Transition Type (“MoveForward” or
“MoveBack”) when button Display Name(s) have been customized so behavior is known. The
Transition Type of “Default” was kept for compatibility for forms built prior to Transition Type
being available on WaitForFormBookmark with default Display Names "Next" and "Back”.

In sequences for multiple signers, youmust set Transition Type = MoveForward on the
WaitForFormBookmark activity in the transition from the Default-Frame form to the
DocuSignWait form. See Transition from the IFrame Form to the DocuSignWait Form.

l Grid Columns Properties:

o The Grid component now supports model bindings for minimum/maximum value ranges
on Date, Number, and String data types.

o Drop-down lists in grids can now be localized.

l JSON Debug Info: The output of the component is no longer rendered when the sequence con-
tains a View Summary component or a PDF is created.

l View Summary: Users can now customize the link/button labels using the "Create PDF Button
Text", "Hide Button Text", and "View Button Text" options in the Control Property Settings.

Forms Sections:

l Enhanced Form Section design with flexible column widths and merge options (see Layout
Enhancements).

l The Visible Property is now bindable.

Functionality to copy and paste controls from one form to another. See Copy and Paste Controls.

About Forms Builder window: Added link http://support.campusmgmt.com for Service Desk.

Sequence Designer

l New buttons to delete:

o All persisted workflow instances of a specific sequence ("Delete Sequence Instances" but-
ton)

o All persisted workflow instances of all sequences ("Delete All Instances" button)

For more information, see Delete Persisted Workflow Instances.

l New sequence properties: Auto Logout when Complete, Header, and Footer

l Additional validation checks and messages if duplicate Model bindings are found or if the argu-
ment type for a Grid and/or Calendar/Scheduler component needs to be updated in the

http://support.campusmgmt.com/

Forms Builder Version 3.6.1 26 Help Guide

workflow after the initial Save of the sequence.

l When the Role value in an existing sequence is modified, Forms Builder checks for persisted
workflow instances and prevents a Save/Update of the sequence. See Role property.

l Added notes and CSS snippets related to Nav Button Position.

Settings

l New Settings options:

o Auto Logout Delay (delay before a user is automatically logged out from a sequence)
o Debug Translations (marks text processed by the translations engine)
o Login Locales (enables users to select locales on an Azure AD login page)
o Additional Bootstrap Themes

l Removed: DocuSign Confirmation Message Text" setting (see DocuSign auto-redirect)

Workflow

l The RoutingOrder attribute on the DocuSignRecipient entity is now available to specify the sign-
ing order in DocuSign sequences for multiple signers. For more information, see Allow Sequen-
tial Signing.

l The VerifyCardPayment activity is now able to verify transactions when IATS is used as the credit
card processing gateway.

Renderer

l Added: Renderer Connection Strings.

l Updated Sequence List layout (width of column headers).

l Azure configuration changes are needed when student and staff users share the same Azure AD
instance. See Azure AD Authentication.

Logging

l Several logger.debug statements and client side logs are modified to Info level to make them
available to help debug issues in an Azure environment since in an Azure environment the log
level is set to Info level for all products. The Info level is set for logs related to:

o Site Warmup
o LookupUser
o Account Controller
o PDF creation and DocuSign
o Payment processing for Paypal, ACI, and IATS

l Updated all examples of LogLine activities indicating that the Level value should be set to
"Information" instead of "Error".

Forms Builder Version 3.6.1 27 Help Guide

l Enhanced error logging for workflow errors (i.e., the exact line and expression causing the error)
and live JSON data at time of failure.

Known Limitations

Added known limitation: DateTime Values in PDF

Installation

Forms Builder 3.6. requires the installation of .NET Framework 4.7.2.

Troubleshooting

Added Forms Builder & Workflow Troubleshooting Tips & Tricks.

Resources

Exposed Events - Date Picker - If "Ignore Time" is false, "formattedDate" is ISO 8601 format date, time,
and offset string. If "Ignore Time" is true, "value" is date only.

Forms Builder Version 3.6.1 28 Help Guide

Known Limitations
The following are known limitations in Forms Builder version 3.6 that will be addressed in a future version. Also lis-
ted below are known issues and workarounds that are applicable to the current version.

DateTime Values in PDF
When the server hosting the Forms Builder application is located in a different timezone than the clients and clients
enter DateTime values in sequences that are converted to PDF on the server, the DateTime values in the PDF do not
match the values entered by the clients.

Currently, the only remedy is to set the server to same timezone as the clients.

Breaking Change: Variables no longer allowed as Model Values

In Forms Builder 3.3 and later, all Model bindings defined or used in a workflow must be arguments (not vari-
ables). Any sequences that are bound to variables will no longer work.

formInstance.UserInfo not populated when using Azure AD
In Forms Builder 3.4 and later, if Azure AD is used for authentication, pre-built forms such as RFIs that use formIn-
stance.UserInfo variables will no longer provide the capability to pre-populate form fields with user information.
To address this issue, see Azure AD Claims.

Import/Export
The Import/Export functionality is forward compatible, i.e., sequences exported from Forms Builder 3.2 can be
imported into Forms Builder 3.3 or 3.4. However, due to contract changes, backward compatibility is not supported,
i.e., sequences exported from Forms Builder 3.3 or 3.4 cannot be imported into Forms Builder 3.2.

Creating Forms

Payment Country in Credit Card Payment Component

The Credit Card Payment component currently does not pass Payment Country values other than "Unites States of
America" to the PayPal site. If any other Payment Country values are specified, either the Country drop-down list will
not be displayed, or the user will have to select the country in the payment form on the PayPal site. Payment Coun-
try is an optional property for the Credit Card Payment component.

Using Multiselect for Single Property Collections

There are several instances within the CampusNexus Student and CampusNexus CRM models whereby multiple
selections of a single property are needed. Currently, the ability to achieve this capability via the dragging of the

Forms Builder Version 3.6.1 29 Help Guide

applicable properties from the model onto the Form Designer Layout pane is not supported. Instead, the custom
Multiselect component from the Components tab in Form Designer must be used to achieve this capability. For
more information, see Multiselect for Single Property Collections.

Entities in "Show All" List Not Fully Defined

The Lookup Query attribute in the metadata has been defaulted for all of the entities that are displayed in the
default list.

For other entities in the model that are only displayed when “Show All” is selected, the Lookup Query attribute may
not have any default values. For these entities the desired OData query will need to be manually entered. For inform-
ation about creating OData queries, see OData Queries and https://www.odata.org/. The Control Type may also not
be defined, in which case a custom Component may need to be used.

Rendering Sequences

Accessing the Sequence List

A server error occurs when the Sequence List is opened in the same browser as Form Designer or Sequence
Designer. To avoid this error, use different browsers, e.g., open the Sequence List in Google Chrome while Form
Designer is open in Internet Explorer.

You can also use the incognito (or private browsing) mode in any browser. For example, you can open Form
Designer in Chrome and then open the Sequence List in another instance of Chrome in incognito mode. Note that
you must open another instance of the browser (not just another tab) in incognito (private browsing) mode.

For sequences that use the CAPTCHA and DocuSign Components (which rely on third party application), the browser
security must be set so that certificates are accepted.

Managing/Modifying Workflow Definitions

Student Address Changes

The message “You made a change to the address. Do you want to save the old address as another address type?” is
displayed when a student’s address and related fields of the StudentEntity are modified. To avoid this message,
include an Assign activity in the workflow with the following assignment: stu-
dentEntity.StudentAddressAssociation = Cmc.Nex-
us.Common.Entities.StudentAddressAssociation.IgnoreInStudentAssociation

Note: The entity field studentRelationshipAddressEntity.IsPermanentAddress has been changed to
studentRelationshipAddressEntity.IsSeasonalAddress.

For more information, see Student.

https://www.odata.org/

Forms Builder Version 3.6.1 30 Help Guide

Miscellaneous

Limitations for Mobile Devices

The following features are currently not supported on mobile devices:

l Calendar/Scheduler
l View Summary

The following components have limited functionality on a mobile device and must be used in horizontal orientation:

l Grid
l DocuSign

Forms Builder Version 3.6.1 31 Help Guide

Required Skills
The Forms Builder application is intended to be used by staff members with the following knowledge and skills.

Prerequisite Knowledge
l Understanding of business processes

l Understanding of CampusNexus Student application and schema and/or CampusNexus CRM application and
schema

l Awareness of .NET technologies and understanding of VB.NET

o Creating variables, assigning data types, and a basic understanding of development languages

l Awareness of:

o Windows Workflow Foundation

o CSS themes

l SQL Knowledge

o Ability to create SQL jobs, call stored procedures and write queries

l General development knowledge of variables, arguments, control logic, exception handling, debugging, etc.

Advanced Forms Builder and Workflow Development
Expertise in the following is recommended:

l AngularJS (expressions)

l OData

l REST (JSON)

l Bootstrap (themes)

l Workflow tracking and persistence

l TSQL skills to write stored procedures

Forms Builder Version 3.6.1 32 Help Guide

About Forms Builder 3.x
The next generation of Forms Builder uses OData (Open Data Protocol) to access and expose data from various
data sources such as the CampusNexus Student database, the CampusNexus CRM database, or both. Forms Builder
has access to the entire data model for these applications. The adapters built for Forms Builder 2.x to expose data
properties and implement business logic rules are no longer applicable and do not exist in Forms Builder 3.x.

Forms Builder 3.x provides greater flexibility to the user and enables integration with Workflow (“Form Flow”). Each
new sequence that is created and saved automatically saves a corresponding workflow definition that can be further
customized or edited in Workflow Composer.

The following components are used with Forms Builder 3.x:

l Web Client for CampusNexus CRM and/or Web Client for CampusNexus Student
l Workflow Composer
l CMCFormsBuilderDesigner_V3
l CMCFormsRenderer_V3

Designer is installed on port 9002 by default. When you access your Forms Builder URL with this port number, the
Home page is displayed.

Renderer is installed on port 9003 by default. When you access your Forms Builder URL with this port number at
http://<server>.<domain>:9003/#/Sequencelist, the Sequence List is displayed.

The URLs and port numbers are customizable during installation.

Database Providers and Authentication
CampusNexus CRM, CampusNexus Student, or both products can be database providers for Forms Builder. The
web.config files of Form Designer and Renderer contain "enabled" attributes for the products. Depending on the
options selected in Installation Manager, the "enabled" attributes are set to "true" for each product.

Authentication of Forms Builder users is based on the security tokens issued by the Student STS for CampusNexus
Student and the Contact STS for CampusNexus CRM. The <trustedIssuers> section of the web.config file for Forms
Builder Renderer has empty thumbprints for the Student STS and/or Contact STS. When CampusNexus Student is
enabled during installation, the Student STS thumbprint is populated. When CampusNexus CRM is enabled, the
Contact STS thumbprint is populated. When both products are enabled, both thumbprints are populated. Single
sign-on allows Forms Builder users to access both databases. The user can select the database service provider in
Form Designer (see Select Provider).

Workspaces
After logging in to the Forms Builder application, theHome page is displayed.

Forms Builder Version 3.6.1 33 Help Guide

Click the product name to return to the Forms Builder home page from any other page.

Forms Builder Header Elements

Forms Builder Version 3.6.1 34 Help Guide

Click the drop-down arrow next to the name of the logged in user to Sign Out or the About Forms Builder window.

The About Forms Builder window contains the following information:

l Forms Builder Version
l Connections for database access
l Web Client URLs for CampusNexus Student, CampusNexus CRM, and Occupation Insight (as applicable)
l Install Date
l Link for the Service Desk at Campus Management Corp.

Click the icon to access this help system.

The tiles on the Forms Builder home page link to the following workspaces:

l Form Designer
l Sequence Designer
l Export/Import
l Internationalization
l Custom Content
l Settings

Form Designer

The process of building forms starts with Form Designer. You access the URL and port assigned to CMCForm-
sBuilderDesigner_V3 and select the Form Designer tile on the home page. The first time you open Form Designer,
the metadata service of the installed web client (CampusNexus Student and/or CampusNexus CRM) is invoked and
the entities of the CampusNexus data model are loaded into Forms Builder.

The building blocks in Form Designer include:

l Forms (flyout menu)
l Tabs for Fields, Components, and Form Sections

Forms Builder Version 3.6.1 35 Help Guide

l Layout pane
l Property Settings pane

You can build forms using any of the available CampusNexus entities. You select an entity, select an associated field,
and drag the field into the form layout pane. For more information, see Fields.

You can add custom controls to any form. The custom controls are on the Components tab and include check
boxes, hyperlinks, text boxes, and so on.

You arrange fields and/or components in the Layout pane based on your selected column layout for the form. You
use the Control Property Settings pane to assign properties to the items in the Layout pane. Properties include
options such as label, tooltip, class, and so on. The values for properties can be data types such as Boolean, strings,
numeric, arrays, and expressions.

TheModel property is especially powerful and flexible. Any field or component can be bound using the Model prop-
erty. A bound control is a control whose source of data can be any value assigned to a workflow argument. The
designer of the workflow determines the source of the value. It could be a constant or a calculated value from the
workflow. It also can be a value from another control or from external JavaScript code using the global variable
vmModelsRef. The Model property is an Angular JS container that allows you to pass data to a workflow regardless
of whether the control is a based on a CampusNexus entity/field or custom component. You can use the Model
property to create arguments to hold bidirectional data. Data can be passed both to and from a workflow, to and
from another control, or to and from external JavaScript.

Sequence Designer

Once you have created and saved individual forms, you combine the forms into a sequence using Sequence
Designer. You specify properties for sequences such as authentication, title, name, theme, end state form, and URL.

For every sequence Forms Builder automatically creates a workflow definition based on the initial layout of the
sequence. The name of the workflow definition matches the sequence name. Forms Builder passes data to the work-
flow through arguments in the Model property of fields and components. Using Workflow Composer you can cus-
tomize the workflow definition and insert workflow activities that manipulate the data. When an activity starts
executing, the values of all of its arguments are evaluated. Workflow Composer enables you to apply customized
logic to forms, write data to the database, and trigger specific events. For more information, see Open the Workflow
for a Sequence and State Machine Workflows.

End users, for example students or leads, access the published forms and submit data that can then be stored in a
database as a result of the modified workflow definition including applicable activities for saving/updating data.

The markup for the sequences is saved in the CampusNexus Student or CampusNexus CRM database. Unlike Forms
Builder 2.x, Forms Builder 3.x does not require its own database. For more information, see Set Up the Database
Environment.

Sequences can be anonymous or non-anonymous. Non-anonymous sequences require users to provide credentials
and be authenticated (see Renderer Authentication).

Export/Import

The Export/Import workspace enables you to export and import sequences and workflows from one environment

Forms Builder Version 3.6.1 36 Help Guide

and to another. For more information, see Export/Import.

Internationalization

The Internationalization workspace enables you to generate .pot files and import .po files. The .pot files contain
translatable text that is extracted from sequences. The .po files contain translations for specific languages. For more
information, see Internationalization.

Custom Content

The Custom Content tile on the Home page of Form Designer enables users to upload files used to customize forms.
This feature is intended for users who do not have access to their web site file system or who simply want to use this
feature to store custom files in the database and use the files when building forms. For more information, see Cus-
tom Content.

Settings

The Settings workspace is used to configure attributes and resources for features such as DocuSign, Themes,
reCAPTCHA, Credit Card Payment, and custom error messages. For more information, see Settings.

Forms Builder Version 3.6.1 37 Help Guide

Basic Steps
The following table outlines the basic steps for getting started with Forms Builder 3.x. Each step points to reference
information within this Help system. After you have performed the tasks and read the related information, you'll be
able to build more complex forms, and you'll know where to find help.

Step Task Description Help Topic

1 Check pre-
requisites

Verify the environment setup and configuration. Installation

2 Explore the
UI

Familiarize yourself with the Forms Builder architecture and explore
the workspaces.

About Forms Builder 3.x

3 Build a form In Form Designer:

a. Click New Form.

b. Select the Fields tab.

c. If your database provider is CampusNexus Student, select
the Student entity.
If your database provider is CampusNexus CRM, select the
Contact entity.

d. In the Layout pane, create a 2-column section.

e. Select the First Name field and drag it into the Layout pane.
Accept the default properties.

f. Select the Last Name fields and drag it into the Layout
pane. Accept the default properties.

Fields Tab

4 Build a form
(continued)

In Form Designer:

a. Select the Components tab.

b. Add an HTML component to the form.

c. In the Property Settings pane, select the HTML field, and
specify some text.

d. Save the form.

Components Tab

HTML Component

5 Build a
sequence

In Sequence Designer:

a. Click New Sequence.

b. Drag the new form into the Layout pane and specify some
sequence properties.

c. Save the sequence.

Sequence Designer

Forms Builder Version 3.6.1 38 Help Guide

Step Task Description Help Topic

6 View a
sequence

Open the Sequence List in a different browser (or in an incognito
session of the same browser) and view the rendered sequence.
Keep the browser window open.

Sequence List

7 Modify a
form

Return to Form Designer andmodify the property settings for a field
or component and save the form again.

Control Property Set-
tings

8 Review a
sequence

Return to the browser window with the rendered form and reload/re-
fresh the webpage. Verify that themodified properties are displayed
as expected.

Troubleshooting

9 Open the
workflow

LaunchWorkflow Composer and open the workflow. Open theWorkflow for a
Sequence

10 Explore the
workflow

InWorkflow Composer, explore the states, transitions, and argu-
ments that were automatically created for the sequence.

StateMachineWork-
flows

Workflow Activities for
Forms Builder

11 Modify the
workflow

Modify the Entry area of the first State in the workflow as follows:

a. Add a LookupUser activity.

b. Add aGetEntity<> activity.

Optional: Modify the Action area of the Next transition in the work-
flow as follows:

a. Add a SaveEntity<> activity.

Save and publish workflow.

Create, Get, and Save
Entity Activities

LookupUser

GetEntity<> (Workflow
Help)

SaveEntity<> (Work-
flow Help)

Save and Publish Work-
flows (Workflow Help)

12 Test and
verify

Return to the browser window with the rendered form and reload/re-
fresh the webpage. Verify that the name of the student/lead is now
pre-populated in the form fields.

If you added the SaveEntity<> activity, verify that the data table is
updated, and the data entered and saved on the form is displayed in
the client for CampusNexus Student or CampusNexus CRM.

Troubleshooting

13 Clean up Remove the test form and sequence. Delete Forms

Delete Sequences

For examples end-to-end procedures for building forms, sequences, and workflows, please see Use Cases.

https://help.campusmanagement.com/WF/Content/Workflow/GetEntity.htm
https://help.campusmanagement.com/WF/Content/Workflow/SaveEntity.htm
https://help.campusmanagement.com/WF/Content/Workflow/PublishWorkflow.htm
https://help.campusmanagement.com/WF/Content/Workflow/PublishWorkflow.htm

Forms Builder Version 3.6.1 39 Help Guide

Forms Builder Version 3.6.1 40 Help Guide

Installation
The topics in this section provide important information about the setup and configuration of Forms Builder in dif-
ferent environments.

Important

In any environment, after a fresh installation of Forms Builder, before you can publish the URLs of rendered
form sequences for end users, you must log in to Form Designer and select the Settings tile.

In the Settings workspace:

l Provide your DocuSign credentials
l Update the reCAPTCHA test key
l Update the Payment test keys

Updating the Error Message Text is recommended but not mandatory. For more information, see Settings.

Note: Forms Builder 3.6. requires the installation of .NET Framework 4.7.2.

Forms Builder Version 3.6.1 41 Help Guide

Set Up the Database Environment
Forms Builder 3.x can be used with the databases of CampusNexus CRM, CampusNexus Student, or both. In addi-
tion, the Workflow Composer along with appropriate packages for contracts and activities is required.

For details about the supported product version combinations, refer to the Product Compatibility Matrix (logon
required).

Depending on the database environment, perform the following integration and verification steps.

CampusNexus CRM Environment
1. Use Installation Manager to install CampusNexus CRM (including the Web Client).

2. On the machine where the Web Client for CampusNexus CRM is installed:

a. Navigate to \inetpub\wwwroot\cmc.crm.workspaces.

b. In CampusNexus CRM version 11.1, open theNexusCRM.config file.

In CampusNexus CRM version 12.0 or later, open theweb.config file.

c. Find "EdmModelGeneration" and make sure that BuildMode is enabled.

3. Use Installation Manager to installWorkflow Composer.

4. Open Workflow Composer, click Package Manager, and verify that the activities and contracts for your
product versions are installed.

For example, if you are using Forms Builder 3.5 with CampusNexus CRM 12.1, install the following packages:

l Forms Builder Contracts 3.5.0 (3.5.0.xxx)
l Activities and Contracts (CRM) 12.1.0 (12.1.0.xxx)

Remove the packages for older versions when you install new versions.

5. Log in to theWeb Client for CampusNexus CRM.

6. Open File Explorer, navigate to \inetpub\wwwroot\Cmc.Crm.Workspaces\bin\, and copy theCmc.Nex-
usCrm.Contracts.dll file.

7. Paste theCmc.NexusCrm.Contracts.dll file into the following locations:

http://www.mycampusinsight.com/compatibility/SiteAssets/Product-Compatibility-Matrix.pdf
https://help.campusmanagement.com/IM/Content/Resources/welcome.htm

Forms Builder Version 3.6.1 42 Help Guide

l On the machine that hosts Forms Builder: \inetpub\wwwroot\CMCFormsRenderer_V3\bin\
l On the machine where Workflow Composer is installed: \Program Files (x86)\CMC\Workflow\

Every time you build new custom fields/entities in CampusNexus CRM, you need to copy the Cmc.Nex-
usCrm.Contracts.dll to these locations.

Do not copy the Cmc.NexusCrm.Contracts.dll to the \bin folder of Forms Builder

Designer.

Note: With Workflow Composer 2.8 and later, the .dll file can be copied while you remain logged on to
Workflow Composer. Any updates will be reflected in Workflow Composer after you log off and on
again.

Verify the Setup

After Forms Builder 3.x has been installed:

1. Log in to Forms Builder.

2. In Form Designer, create a form that collects data for a Contact.

3. In Sequence Designer, create and save the sequence.

4. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

5. In Workflow Composer, add a CreateEntity<ContactEntity> activity to the Entry of the first form and a
SaveEntity<ContactEntity> activity in the final transition.

6. Publish the updated workflow definition.

7. In the Sequence List, open and fill out the rendered form.

8. In the Desktop for CampusNexus CRM, verify that the new Contact is created.

Note: In this environment, workflow definitions for sequences are saved in the database of CampusNexus CRM.

For more information, see CampusNexus CRM Integrations.

CampusNexus Student Environment
1. Use Installation Manager to install CampusNexus Student (including the Web Client).

2. Use Installation Manager to installWorkflow Composer.

3. Open Workflow Composer, click Package Manager, and verify that the activities and contracts for your
product versions are installed.

For example, if you are using Forms Builder 3.5 with CampusNexus Student 19.0.4, install the following pack-
ages:

https://help.campusmanagement.com/IM/Content/Resources/welcome.htm

Forms Builder Version 3.6.1 43 Help Guide

l Forms Builder Contracts 3.5.0 (3.5.0.xxx)
l Activities and Contracts (V1) 19.0.4 (19.0.4.xxx)
l Activities and Contracts (V2) 19.0.4 (19.0.4.xxx)

Remove the packages for older other versions when you install new versions.

Verify the Setup

After Forms Builder 3.x has been installed:

1. Log in to Forms Builder.

2. In Form Designer, create a form that collects data for a Student.

3. In Sequence Designer, create and save the sequence.

4. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

5. In Workflow Composer, add a CreateEntity<Studententity> activity to the Entry of the first form and a
SaveEntity<StudentEntity> activity in the final transition.

6. Publish the updated workflow definition.

7. In the Sequence List, open and fill out the rendered form.

8. In the Web Client for CampusNexus Student, verify that the new Student is created (or check the syStudent
table in the database).

Note: In this environment, workflow definitions for sequences are saved in the database of CampusNexus Student.

CampusNexus CRM and CampusNexus Student Environment
If you are using both CampusNexus CRM and CampusNexus Student, perform all of the steps above.

Note: In this environment, workflow definitions for sequences are saved only in the database of CampusNexus Stu-
dent.

Forms Builder Version 3.6.1 44 Help Guide

CampusNexus CRM Integrations

Prerequisites
TheHigher Ed and Web Client components of CampusNexus CRM must be installed.

Integrate Forms Builder 3.x with CampusNexus CRM 11.1 or Later
1. If you're using CampusNexus CRM 11.1:

In the Web Client installation folder, in theNexusCrm.config file, set the value of the
EdmModelGeneration BuildMode parameter to Enabled, and then restart the
Cmc.Crm.Workspaces application pool.

If you're using CampusNexus CRM 12.0 or later:

In the Web Client installation folder, in theweb.config file, set the value of the EdmModelGen-
eration BuildMode parameter to Enabled, and then restart the Cmc.Crm.Workspaces applic-
ation pool.

2. Copy theCmc.NexusCrm.Contracts.dll file from the \bin folder of Web Client to the installation folder of
Workflow Composer and Forms Renderer.

All operational and reference objects are wrapped in this file Cmc.NexusCrm.Contracts.dll. When new prop-
erties are created in CampusNexus CRM or an existing property definition (metadata) is changed, this file is
regenerated. For example, it is regenerated when creating or updating an object, a tab, a property or a rela-
tionship.

The regenerated file will need to be copied to the installation folder of Workflow Composer and to the \bin
folder of Forms Renderer.

Do not copy the Cmc.NexusCrm.Contracts.dll to the \bin folder of Forms Builder

Designer.

Note: With Workflow Composer 2.8 and later, the .dll file can be copied while you remain logged on to Work-
flow Composer. Any updates will be reflected in Workflow Composer after you log off and on again.

3. In CampusNexus CRM a maximum of 1024 properties can be published for use with Forms Builder 3.x. If
additional properties are needed, unpublish previously published properties and then publish new prop-
erties. The maximum count of 1024 properties cannot be exceeded.

For more information about publishing and unpublishing object properties, see the description of the sproc_
GetPropertiesPublishStatusForObject and sproc_SetPropertiesPublishStatusForObject stored procedures in
the CampusNexus CRM Integration guide.

4. If you're using CampusNexus CRM 11.1:

Forms Builder Version 3.6.1 45 Help Guide

To consume events triggered from Web Client and iServices in Workflow Composer, set the
value of theWorkflow Integrated parameter to “True” in theNexusCRM.config file in the
Web Client installation folder. By default, its value is “False”.

If you're using CampusNexus CRM 12.0 or later:

To consume events triggered from Web Client and iServices in Workflow Composer, set the
value of theWorkflow Integrated parameter to “true” in theweb.config file in the Web Client
installation folder. By default, its value is “False”.

Integrate Workflow Composer with CampusNexus CRM 11.1 or Later
CampusNexus Student and CampusNexus CRM can use a single installation of Workflow Composer and Forms
Builder 3.x to work with both applications.

1. In Workflow Composer, click Package Manager, and install theActivities and Contracts (CRM) package
corresponding to the installed CampusNexus CRM version.

2. Copy the Cmc.NexusCrm.Contracts.dll and Cmc.NexusCrm.WcfProxy.dll files from the \bin folder of
Web Client to the installation folder of Workflow Composer and to the \bin folder of Forms Renderer.

Do not copy the Cmc.NexusCrm.Contracts.dll to the \bin folder of Forms Builder

Designer.

Note: With Workflow Composer 2.8 and later, the .dll file can be copied while you remain logged on to Work-
flow Composer. Any updates will be reflected in Workflow Composer after you log off and on again.

3. In the installation path of Workflow Composer, open theWorkflowComposer.exe.config file using a text
editor and locate to the <appSettings> tag.

4. Verify that the value of theConfigureCampusNexusWcfProxy key is “true”. Change it to “true” if a dif-
ferent value is set.

5. Add a new key, CmcNexusCrmWebUrl, and specify the Web Client URL as its value.

Updated code in the <appSettings> tag will now be as follows:

<appSettings>
<add key=”ConfigureCampusNexusWcfProxy” value=”true”/>
<add key=”CmcNexusCrmWebUrl” value=”<Web Client URL>”/>
</appSettings>

6. Save and close the WorkflowComposer.exe.config file.

Run an OData Query in the Web Client
System integrators can view the results of a lookup query that is available in the Web Client for CampusNexus CRM.
Prior to integrating with CampusNexus CRM, this functionality helps an integrator to verify the list of values that will
be displayed in their query.

Forms Builder Version 3.6.1 46 Help Guide

View Lookup Query Results

1. Suffix the Web Client URL as follows: http://<web client url>/nexuscrmodata/$metadata.

The webpage that is displayed includes lookup queries that are available by default.

2. Search for the text “lookup” and then navigate to the query that you want to run.

Example

You want to run the following query to verify the list of available Account types:

LookupQueryName="EnumAccountAccountTypes?$select=Id,DisplayValue&$filter=IsActive eq 1&$orderby-
y=DisplayOrder"

a. Copy the following text from the query:

EnumAccountAccountTypes?$select=Id,DisplayValue&$filter=IsActive eq
1&$orderby=DisplayOrder

b. Append the copied text to the Web Client URL as follows:

http://<Web Client URL>/nex-
uscrmodata/EnumAc-
coun-
tAc-
coun-
tTypes?$se-
lect=Id,DisplayValue&$filter=IsActive%20eq%201&$orderby=DisplayOrder

c. Press ENTER.

3. The list of values available in the Account Type property is displayed.

Forms Builder Version 3.6.1 47 Help Guide

API Keys
To enhance the security of Campus Management Corp. products, API keys were added to the products released in
May 2018 and later. An API key is a secret token that is submitted with a web service request to identify the origin of
the request. The key for the consumer of the service needs to match the key of provider of the service, otherwise
access to the service is rejected. The API key is unique for each customer.

The API key is an AppSetting in the web.config files of applications built on the CampusNexus framework. It uses the
following syntax:

<add key="apiKey" value=""/>

The API key is the same key that is used in the Package Manager screen of Installation Manager.

Installation Manager 1.18 and later automatically adds the key value to the web.config files during installation of the
following product versions:

l CampusNexus CRM 12.0 and later
l CampusNexus Student 19.0 and later
l Contracts & Activities 19.0 and later
l Portal 19.0 and later
l Regulatory 10.1 and later
l Financial Aid Automation 6.2 and later
l Workflow Composer 2.6 and later

Using Earlier Product Versions
If you are using products with earlier versions in combination with any of the above listed versions, the API key must
be manually added to the web.config file of the older version.

If there is no key defined in the web.config file, a default key that exists in the authentication provider will be used.

Depending on the product and version, you may need to overwrite the default key with your customer-specific key
value.

— OR —

If the appSettings section does not contain the <add key="apiKey" value=""/> line, add the line and spe-
cify your key value.

Forms Builder Version 3.6.1 48 Help Guide

The following is a snippet of a web.config file for Forms Builder Renderer 3.4:

<appSettings>
<add key="ConfigureCampusNexusWcfProxy" value="true" />
<add key="ConfigureCVueNexusWcfProxy" value="true" />
<!-- Following will be populated when Crm is enabled for Forms Builder -->
<add key="CmcNexusCrmWebUrl" value="http://<server:port>/" />
<add key="PaymentProvider" value="pilot-payflowpro.paypal.com" />
<add key="AuxiliaryServiceBaseUrl" value="" />
<!-- Following should be set to true only in Azure environments where the Auxiliary service is

installed and required. -->
<add key="UseRemotePDFConverterService" value="false" />
<!-- Following sets a time before conversion to PDF starts. Default 500, increase if blank doc-

uments on a slow server. -->
<add key="ViewCreatorDefaultStartConversionTimerInMilliseconds" value="" />
<add key="ApiKey" value="<Your API key value>" />

</appSettings>

If the API keys are not set up correctly, an "Access denied" error will be seen in the Renderer log, for example,
when a Forms Builder workflow calls a CampusNexus Student activity.

Forms Builder Version 3.6.1 49 Help Guide

Update Forms Builder URLs (HTTPS or HTTP)
You can host Form Designer, Forms Renderer, and STS on public URLs or on port 443 with HTTPS. Use the following
steps to remap existing working Forms Builder websites to HTTPS and hosted on port 443. The steps remain same
even when Form Designer and Forms Renderer are hosted on public HTTP URLs.

1. Determine the public URLs for Form Designer, Forms Renderer, and STS. For purpose of this example, we will
assume URLs as follows:

Form Designer: https://design.campusmgmt.com

Forms Renderer: https://apply.campusmgmt.com

STS: https://signin.campusmgmt.com

2. Edit the binding information of Form Designer, Forms Renderer, and STS in IIS. (Skip this step if you are not
using SSL.)

In IIS, right-click on the site for FormsBuilderDesigner, and click on Edit Bindings.

a. Click theAdd button.

b. Select Typehttpsand specify Port 443.

c. The IP address is optional.

d. Specify theHost name.

e. Select an appropriate SSL certificate.

The following image shows the Site Binding for Form Designer.

Remove the previous non-HTTPS binding information after the above change.

Repeat this step for Forms Renderer and STS.

3. Modify the following settings in the <system.identityModel> section in the web.config files of Form

Forms Builder Version 3.6.1 50 Help Guide

Designer and Forms Renderer:

Update the following properties in theweb.config file of FormsBuilderDesigner:

l Audience URI:

<audienceUris>

<add value="https://design.campusmgmt.com" />

</audienceUris>

l TrustedIssuers:

name="https://signin.campusmgmt.com/"

l Copy the latest thumbprint value from the certificate used for STS and update it in the thumbprint sec-
tion.

Repeat this step for Forms Renderer.

4. Modify the <system.identityModel.services> section in the web.config files of Form Designer and
Forms Renderer.

Update following properties in theweb.config file of Form Designer:

l federationConfiguration/wsFederation:

issuer="https://signin.campusmgmt.com/"

realm="https://design.campusmgmt.com/"

reply="https://design.campusmgmt.com/"

Repeat this step for Forms Renderer.

Forms Builder Version 3.6.1 51 Help Guide

Apply a New SSL Certificate to STS
Perform the following steps to set up a new SSL certificate with Forms Builder websites. These steps are valid for any
STS used by Forms Builder.

1. Ensure that a new certificate is installed in IIS.

The SSL certificate must be a purchased public certificate which can be verified by common root cer-
tificate authorities such a GoDaddy or Verisign, among several. Self-signed certificates cannot be used
except in a closed testing environment.

2. Determine the Thumbprint and Subject Name of the new certificate.

You can run following command in Windows PowerShell with correct path to retrieve that information:

Get-ChildItem -Path cert:\LocalMachine\My

3. Update the binding information for CMCPortalSTS to refer to the new certificate.

In IIS, select CMCPortalSTS > Edit Binding > Edit HTTPS and choose the correct certificate.

4. Modify following two AppSettings in the web.config of CMCPortalSTS:

l SigningCertificateName

Copy the latest Subject Name from PowerShell in this location.

l CertThumbprint

Copy the latest Thumbprint from PowerShell in this location.

5. Modify following key in the web.config files of CMCFormsBuilderDesigner_V3 and CMCFormsRender_V3:

l Thumbprint under TrustedIssuers

Copy the latest Thumbprint from PowerShell in this location.

Forms Builder Version 3.6.1 52 Help Guide

Upgrade Considerations
To prevent any customizations from being lost when the Forms Builder version is upgraded, ensure that you take
the following steps.

Save Default Forms
The following forms are intended as templates should not be modified and used in a sequence:

l Default-Confirmation
l Default-Frame
l Default-DocuSignWait

These forms are overwritten with the latest changes during an upgrade. If you have modified them directly,
you will lose your changes.

Make a copy of each form by doing a Save As in Form Designer, modify the new form, and use it in a sequence.

Preserve Custom Files
In Forms Builder 3.3, a folder was added to Renderer that will not be modified on updates. This folder is /Con-
tent/Custom/ (from the root of the Renderer website).

Initially the folder contains only one file named CustomerIncludes.html. Do not delete this file. If it is missing,
create an empty file by this name.

This folder is also the home for a custom theme file created for a sequence and named in the “Custom Theme” prop-
erty for that sequence. A theme file provides the ability to specify a theme on a sequence by sequence basis.

If custom styles or scripts are required and they are global in nature, that is, they need to be applied to every
sequence, then instead of being put in a theme file, they can be put in files and added to this folder.

Edit the file CustomerIncludes.html. Use the example of either the script reference or the style reference to add
the custom script or style. The commented examples are:

<!--
Examples:
<script src="/Content/Custom/MyScripts.js"></script> -- Use this for a script file.

<link href="/Content/Custom/MyStyles.css" rel="stylesheet" /> -- Use this for a style sheet.
-->

The file CustomerIncludes.html is always loaded; therefore, any files referenced in this file will also be loaded.

Since this file will not be modified on an update, nothing will need to be done to preserve customizations during an
update.

Forms Builder Version 3.6.1 53 Help Guide

Best Practices for a Successful Go-Live
After installing or upgrading Forms Builder and developing form sequences in a test environment, it is important to
observe some best practices to ensure a smooth transition to a production environment. The following recom-
mendations are intended to help ensure a successful go-live.

Logging

Important

Log files may contain confidential information such as user names and passwords, account information, etc. It
is your responsibility to protect sensitive user and system data.

To mitigate the risks of exposing sensitive data, observe the following best practices:

l Set the log level in production environments to the lowest, least detailed log level. Increase the log level
in test environments only when needed. Reset the log level when testing is complete.

The default logging provider used by CampusNexus products is NLog. NLog allows you to configure log
targets, levels, rules, layouts, etc. through configuration. To configure logging for CampusNexus
products, modify the NLog.config file in the application’s executing directory. For Web applications, this
file exists alongside the web.config file.

l When LogLine or LogObject workflow activities are used to capture entities that contain sensitive inform-
ation, remove such activities as soon as testing is complete.

We recommend setting the Level value to Information for any LogLine or LogObject activities. See
Best Practices for Logging and Logging in Azure

If, instead you followed the recommendations, and the development machine NLog minLevel is set to
“Info” and all logging is done at the “Information” level, and the production machine NLog minLevel is
set to “Error” (default), then nothing needs to be done because the production machine will not log
“Information” LogLine or LogObject activities. The additional benefit is that the logging is still available if
a problem can only be seen in a production machine, and lowering the NLog minLevel to “Info” tem-
porarily (and restarting the app pool) will allow troubleshooting.

NLog Levels

In a test environment, the NLog.config might have been set to Info for debugging purposes. The Info level cap-
tures detailed messages written by LogLine workflow activities.

In a live environment, the NLog.config should be set to Error level so that none of the LogLine information appears
in the log files and performance is improved. By changing the NLog level you don't need to remove LogLine activ-
ities from the workflows. If troubleshooting is required in a live environment, you can set the NLog level temporarily
to Info.

Forms Builder Version 3.6.1 54 Help Guide

1. In the CMCFormsRenderer_V3 folder, locate theNLog.config file.

2. In the <rules> section of the NLog.config file, set minLevel to Error.

<rules>
<logger

 name = "*"
 minLevel = "Error"

writeTo = "file" />
</rules>

3. Save the NLog.config file.

In Forms Builder 3.5, the NLog levels for Designer and Renderer are configured in the Settings workspace. After
changing the settings, the Designer and/or Renderer websites must be restarted.

In Forms Builder 3.5.1 and later, the ability to set NLog levels in the Settings workspace of Form Designer is
removed to prevent conflicts with Azure log configurations. Azure logs are stored in customer-specifc tables. If your
Forms Builder deployment is in an Azure environment, contact Campus Management Corp. obtain access
to the Azure log tables or to request changes in the NLog settings.

In Forms Builder 3.5.1 and later, the ability to set NLog levels in the Settings workspace of Form Designer is
removed to prevent conflicts with Azure log configurations. Azure logs are stored in customer-specifc tables. If your
Forms Builder deployment is in an Azure environment, contact Campus Management Corp. obtain access
to the Azure log tables or to request changes in the NLog settings.

In Forms Builder 3.6., several logger.debug statements and client side logs are modified to Info level to make them
available to help debug issues in an Azure environment since in an Azure environment the log level is set to Info level
for all products. The Info level is set for logs related to:

l Site Warmup
l LookupUser
l Account Controller
l PDF creation and DocuSign
l Payment processing for Paypal, ACI, and IATS

Workflows
Use formInstance.ValidationMessages

Check the value of the ValidationMessages property on all workflow activities that have this property. The value
should be set to formInstance.ValidationMessages to ensure that all form validation errors are captured in a live
environment.

Don't Use Condition=True in Transitions

Set the value of the Condition field in transitions to Not formInstance.ValidationMessages.HasErrors or leave it
blank. Do not use a Condition of True.

Forms Builder Version 3.6.1 55 Help Guide

If the Condition of a transition evaluates to False, the transition will not occur. If the Condition is blank, the trans-
ition will occur. The value True can cause unexpected results.

Check the Placement of Custom Validations

Custom Validations using the CreateValidationItem activity should be placed in transitions after the
WaitForFormBookmark activity and before the Condition.

Use Caution with Hard-Coded Values

When using hard-coded lookup values, any minor difference between test and live environment could cause errors
with invalid or non-existent values. For example, if a DocumentType value is hard-coded as 43 instead of using a
LookupReferenceItem activity on the DocumentType property, the value might not return the expected results in a
different environment.

Place Save Activities in the Final Transition

Many of the save activities such as SaveDocument should be done in the final transition (not in the form/state
itself). The save should occur after the WaitForFormBookmark activity. The transition's Condition for completion
can then validate that no errors are returned by the activity before completing the sequence.

Initialize Values in the First State of a Workflow

Initialization of values based on an authenticated user should be done in Entry section of the first form/state in a
workflow.

Remove the Back Transition in Complex Workflows

If a workflow performs multiple activities that create entities (such as enrollments) followed by other activities in
later forms that rely on previous activities (e.g., registering for a class), remove the Back transition option to avoid
duplicates (such as creating a 2nd enrollment).

Create Short Sequences and Simple Workflows

To avoid rollback issues with long sequences and complex workflows, it is best to have sequences with fewer forms
and workflows designed to do only one specific thing.

Prevent DbUpdateConcurrency Exceptions

A DbUpdateConcurrency error occurs when an attempt is made to update an instance of an entity via a Save activ-
ity, but that instance has been modified by another user in the time from when the instance was initially retrieved in
the workflow to the point in time when the Save activity executes.

Example of a DbUpdateConcurrency exception in a Renderer log file:

Forms Builder Version 3.6.1 56 Help Guide

2018-02-27 13:30:16.7645 54 Error Cmc.Nexus.Crm.Workflow.SaveDocument Sys-
tem.ServiceModel.FaultException`1[System.ServiceModel.ExceptionDetail]: Store update, insert, or delete statement
affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were loaded. See
http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic concurrency
exceptions. (Fault Detail is equal to An ExceptionDetail, likely created by IncludeExceptionDetailInFaults=true, whose
value is: System.Data.Entity.Infrastructure.DbUpdateConcurrencyException: Store update, insert, or delete state-
ment affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were
loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic
concurrency exceptions. ----> System.Data.Entity.Core.OptimisticConcurrencyException: Store update, insert, or
delete statement affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities
were loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optim-
istic concurrency exceptions. at Sys-
tem.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.ValidateRowsAffected(Int64 rowsAffected,
UpdateCommand source) at System.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.Update() at Sys-
tem.D...).

The best practice we recommend to avoid this error is to add a TransactionScope activity to the workflow. Use the
defaults of IsolationLevel = Serializable, and a timeout of 1 minute.

Within that TransactionScope, add aGetEntity activity to retrieve the instance of the entity prior to the execution
of the SaveEntity activity. Any property values that need to be updated prior to saving can be done so via Assign
statements right after the Get activity and right before the Save activity.

A transaction locks the database to give the workflow a chance to read and update with no other process sim-
ultaneously doing the same. Read about the other less aggressive isolation levels as they may be adequate for the
purpose based on the type of updates being done and produce less overhead. Google “TransactionScope Isol-
ationLevel Activities”. A “RepeatableRead” may be sufficient.

This pattern will eliminate any chance that another user will update this record in between the execution of the Get
and Save activities within the workflow.

Form Data
Avoid Null References in Workflows

To avoid null reference exceptions, ensure your forms accept only valid values. When working with entities, always
use a CreateEntity activity (if data is initialized in following form), or use a GetEntity activity if looking up a known
item. For example, use a GetEntity activity to retrieve a StudentEntity based on the User Id supplied when a user
logs in to a sequence.

Use Form Designer Properties

For all fields and components in the Layout pane, take advantage of the given Form Designer properties to ensure
good data. For example, use the Required property and specify values in the supported value ranges.

DocuSign Sequences
Place View Summary Before DocuSign Component

Forms Builder Version 3.6.1 57 Help Guide

In sequences with DocuSign component, insert the View Summary component before the DocuSign component so
that the end user can review the responses on all forms before the DocuSign process is invoked.

Include GetDocuSignRecipientStatus Activities

Include GetDocuSignRecipientStatus activities in your DocuSign workflows to handle all status changes (e.g., retry,
completed, denied) and to recover from error conditions including connection loss.

Application Initialization
In Forms Builder 3.4 and later, Designer and Renderer can take advantage of Application Initialization which is avail-
able on Microsoft Windows Server 2012 and later as a standard part of IIS installation.

This means that when a server comes up, or an application pool is reset, or IIS is reset, the website automatically
starts warming up as if a first user had launched a URL on the website. Further, when an application pool auto-
matically recycles, IIS keeps the current process serving files while it warms up a new process. When warm, it redir-
ects requests to the new process and kills the old one, resulting in a seamless recycle of the website.

Typically, a website that is hit by the first user has to start loading all the resources the website needs to serve
webpages. This can take a while. On a website with Application Initialization, the loading of resources can happen
automatically, and within a few minutes response times will be greatly reduced.

In addition, Designer and Renderer support caching. The caching is done during the warmup. This reduces trips to
the database and significantly improves the user experience. Designer caching is on all the time and produces a
noticeable performance increase when moving between panels and workspaces within Designer. Renderer caching is
set in the Settings workspace. See Enable Renderer Caching.

Warmup is implemented in CampusNexus Student version 19.0.5 and later. CampusNexus CRM, Staff STS, and Stu-
dent STS websites are not warmed up. If your workflow uses these sites, it may still take a while for the first user of a
sequence to warm up these websites.

If your server has Application Initialization installed, there are two configuration items for IIS to get this to work fully.

1. On each application pool that you are using (Designer and Renderer usually use different ones), go to
Advanced Settings and set Startup Mode to Always Running.

2. On each website (Designer and Renderer), go to Advanced Settings and set Preload Enabled to true.

Note: These settings will be configured by Installation Manager during the installation of Forms Builder 3.6 and
later.

To test if this is working (non-Azure sites only):

1. In Forms Builder Designer, go to Settings and change the NLog Level to Debug for both Renderer and
Designer.

2. At an administrator command prompt, typenet stop w3svc. This will stop the IIS process.

3. Delete the Designer and Renderer log files for today in C:\Logs.

Forms Builder Version 3.6.1 58 Help Guide

4. At the administrator command prompt, typenet start w3svc.

5. Designer and Renderer log files should be automatically recreated. They will contain Debug log lines with the
words Starting Warmup.

6. Reset your NLog Levels to their original settings and restart IIS.

For details on Application Initialization, see https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-
80-application-initialization.

Persisted Workflow Instances
It is quite common that students begin to fill out a Request For Information form and then change their mind and
exit the sequence before completing. As a result, the durable instance table will accumulate rows for abandoned
sequences that never reach an end state. For a workflow administrator it can become challenging to locate a specific
workflow instance when browsing the list of persisted workflows in Workflow Composer.

A script example has been provided to remove persisted workflow instances for abandoned sequences from the
Durable Instancing table. Run this script periodically as needed.

In Forms Builder 3.6 and later, persisted workflow instances can be deleted from the Sequence Designer workspace.
For more information, see Delete Persisted Workflow Instances.

To run the script to remove persisted workflow instances:

1. Open Microsoft SQL Server Management Studio.

2. Connect to the server and database indicated in the status bar of your Workflow Composer.

https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization
https://docs.microsoft.com/en-us/iis/get-started/whats-new-in-iis-8/iis-80-application-initialization

Forms Builder Version 3.6.1 59 Help Guide

You must have administrator permissions to the database.

3. Click New Query.

4. Copy and paste the following script example into the query window:

You may need to adjust the maximum number of days in the statement "DECLARE @MAX_AGE_IN_DAYS INT
= 20".

l If your form sequences use DocuSign, the time period should be at least 20 days.

l If your form sequences do not use DocuSign, reduce the time period as appropriate.

-- Delete instances older than the defined age
CREATE PROCEDURE [dbo].[Sproc_DeleteWorkflowInstances_20DAYS]
AS
BEGIN

DECLARE @MAX_AGE_IN_DAYS INT = 20

DECLARE @UsefulCursor CURSOR
,@SurrogateInstanceId BIGINT SET @UsefulCursor = CURSOR

FOR
SELECT i.SurrogateInstanceId
FROM [System.Activities.DurableInstancing].[InstancePromotedProperties] p
INNER JOIN [System.Activities.DurableInstancing].[InstancesTable] i ON i.id = p.InstanceId
WHERE DATEDIFF(DAY, i.LastUpdated, GETUTCDATE()) >= @MAX_AGE_IN_DAYS
ORDER BY i.LastUpdated DESC

OPEN @UsefulCursor

FETCH NEXT
FROM @UsefulCursor
INTO @SurrogateInstanceId

WHILE @@FETCH_STATUS = 0
BEGIN

EXEC [System.Activities.DurableInstancing].[DeleteInstance] @SurrogateInstanceId

FETCH NEXT
FROM @UsefulCursor
INTO @SurrogateInstanceId

END

CLOSE @UsefulCursor

Forms Builder Version 3.6.1 60 Help Guide

DEALLOCATE @UsefulCursor
END

5. Click the Execute button to run the script.

Expected result: Commands completed successfully.

6. Once the script is saved to the database, use the following command to run the script whenever needed:

exec Sproc_DeleteWorkflowInstances_20DAYS

You can also put the exec command into a scheduled SQL Server Agent job so it runs nightly unattended.

Forms Builder Version 3.6.1 61 Help Guide

Designer
Forms Builder Designer provides the capability to design forms and sequences which will then be rendered as
webpages via Renderer.

Designer is installed on your web server under wwwroot\CMCFormsBuilderDesigner_V3.

http://<server>.<domain>:<9002>/

Designer is installed on port 9002 by default. The port number can be customized during installation. It can be
installed on port 443 with HTTPS.

https://<server>.<domain>:<443>/

Access your Forms Builder URL with the applicable port number to view the Designer home page.

Forms Builder Version 3.6.1 62 Help Guide

Form Designer
The Form Designer workspace is displayed when you select the Form Designer tile in the home page. This workspace
enables you to create and edit forms. The workspace presents database entities with associated fields and custom
controls available for the form design.

Element Description

Click the left arrow to return to the Forms Builder home page.

Create a new form and clear the Layout pane. On the initial entry to the
page, the Layout pane is disabled until New Form is selected.

Form Designer UI Elements

Forms Builder Version 3.6.1 63 Help Guide

Element Description

Save a form. This button is enabled only if a form is selected.

The Unsaved Changes dialog is displayed prompting you to specify the
Form Name (required), Title (optional), Description (optional), and
End State (optional).

The Title, if assigned, appears on the webpage after a form is rendered.

The Title, Description, and Form Name are displayed in the Sequence
List. You can search or filter forms in the Sequence List based on Title,
Description, and Form Name.

Select the End State check box if the form is used as a Confirmation
form in a sequence. SeeWelcome and Confirmation Forms.

The form is validated before it is saved. See Validation on Form Save.

Save a form with a different Form Name, Title, Description, or End
State. This button is enabled only if a form is selected.

This button is enabled only if a form is selected.Delete a form. For
more information, see Delete Forms.

Save a form section. This button is enabled only if a control or form sec-
tion is selected in the Layout pane.

The Unsaved Changes dialog is displayed prompting you to specify the
Form Section Name (required), Title (optional), and Description
(optional).

The Title, if assigned, appears on the section divider in the Layout
pane. See Form Sections.

Save a form section with a different Form Section Name, Title, or
Description. This button is enabled only if a form section is selected.

Delete a form section. This button is enabled only if a form section is
selected.

Forms (flyout)

Forms Builder Version 3.6.1 64 Help Guide

Element Description

Click the vertical tab on the left to access saved forms. The list of all
saved forms is folded out.

The Forms flyout provides the following search and filter options:

l Tags — Select one or more tags created in the Form Property
Settings pane.

l Date Created — Click the column header to filter the list.

l DateModified — Click the column header to filter the list.

l Text search by form name — Click to filter the list.

When you select a form, the Layout pane displays the form fields, and
the Form Property Settings pane shows the form properties.

Fields Tab

Click the Fields tab to access controls for database fields. When you click a control in the Layout pane, the Property
Settings pane shows the attributes for the selected control. You can edit the attribute values. For more information, see
Fields.

Use this drop-down list to select the product that provides the data-
base. The drop-down list is not displayed if only one database provider
is available.

The options are CRM and Student. Depending on the selected option,
the Entities drop-down list will contain the entities associated with the
data source.

Click the Fields button and select an entity in the drop-down list below
the Fields button to populate the Field Properties pane.

Click the search tool to locate database fields. The entered search/-
filter string not only lists properties (fields) that match what is entered
but will also include any entities that contain the entered string. Enter at
least 3 characters of a field name. The Field Properties pane will dis-
play the fields found in the database. The fields are categorized by entit-
ies.

Forms Builder Version 3.6.1 65 Help Guide

Element Description

Select an entity from the drop-down list. The Field Properties pane will
list the available fields for the selected entity.

For more information, see CampusNexus Student Entities and Cam-
pusNexus CRM Entities.

The Show All Fields check box controls whether a subset or the entire
list of fields (categorized by entities) in the CampusNexus datamodel
is exposed.

The Show All Fields check box is cleared by default. When cleared, a
prescribed list of entities is exposed. The prescribed list of entities was
determined by analysis of the fields available in Forms Builder 2.x. The
prescribed list of entities is aligned as much as possible with what is
exposed in Forms Builder 2.x.

l If you want to access a property that is not in the prescribed list,
select the Show All Fields check box to expose the entire Cam-
pusNexus datamodel.

l If you want to set up a custom filter for exposed entities and
entity properties, configure the Entity and Entity Properties Vis-
ibility under Settings.

The Field Properties pane displays the fields available for a selected
entity.

Depending on the selected entity, navigation properties may be avail-
able. Navigation properties signify a relationship between the selected
entity and another entity in the datamodel. Click to expand the nav-

igation property entity.

Drag items from the Field Properties pane into the Layout pane to build
a form. When a field is brought into focus (click the item in the Layout
pane), the Property Settings pane is refreshed and shows the attributes
for the selected field.

Components Tab

Click the Components tab to access custom controls. When you click a control in the Layout pane, the Control Prop-
erty Settings pane shows the associated properties. You can edit the property values. When you save a form, any cus-
tom controls (and their property values) are persisted with the rest of the form data if the custom controls are bound to
an In/Out argument in the workflow using theModel property. For more information, see Components.

Form Sections Tab

Click the Form Sections tab to access form sections. Form sections contain fields and components that are reused in
multiple forms. For more information, see Form Sections.

Layout Pane

Forms Builder Version 3.6.1 66 Help Guide

Element Description

Use the Layout pane to assemble and organize controls and form sections. Drag controls from the Fields and Com-
ponents tabs or form sections into the Layout pane and rearrange them in the Layout pane.

Note: Youmust drag a control/field over another control. If it is in the top half of an existing control, it will be inserted
before, if in the bottom half, it will be inserted after. You cannot drag over an empty space.

Select themaximum number of columns for a form section (1-12
columns). For more details about the form section design, see Layout
Enhancements.

The default value for the number of columns in a new form is 1. For a
form that was previously saved, the default value for the number of
columns is the last value specified when saving the form.

Add a form section.

Remove a form section.

Remove a field.

Use this tool to specify an optional short description for each control.
This is user information about the purpose of the control. It does not
affect the rendered component. Overflow text is visible within the tool-
tip.

Property Settings Pane

The Property Settings pane displays the property settings of a form, control, or form section.

Use the slider to the left of the Properties Settings pane to adjust the width of the pane. You can also adjust the widths
of the Name and Value columns.

Form Property Settings When a form is loaded from the Forms tab, the Property Settings pane
displays the form properties including Form Name, Title, etc. These
properties are saved with the form. For more information, see Form
Properties.

When the control or form section properties are displayed, click the
form title above the Layout pane to recall the form properties in the Prop-
erty Settings pane.

From Section Property Settings When a form section is selected in the Layout pane, the Form Section
Property Settings are shown. For more information, see Form Sec-
tions.

Forms Builder Version 3.6.1 67 Help Guide

Element Description

Control Property Settings When a control (Field or Component) is selected in the Layout pane,
the Control Property Settings are shown.

The Property Settings pane exposes themetadata for the selected con-
trol. Metadata include default values. Some property values are edit-
able; others are read-only. When a form instance is saved, the property
values associated with the controls on that form instance are persisted
to the database. For more information, see Control Property Settings.

Notation for array variables

Array variables in the Property Settings pane of Form Designer use
AngularJS notation with "square brackets" [].

Example:

Array variables inWorkflow Composer require VB.NET notation with
"rounded brackets" ().

Example:

Forms Builder Version 3.6.1 68 Help Guide

Form Properties

Unsaved Changes Dialog

Each form in a sequence has a Form Name and optional properties such as Title, Description, and End State. You can
specify these properties in the Unsaved Changes dialog when saving a form. The Form Name, Title, and Description
are displayed in the Sequence List and can be used as search and filter criteria.

Form Property Settings Pane

You can assign additional form properties in the Form Property Settings pane which is displayed when:

l The form is loaded from the Forms fly-out tab.
l The form title is clicked above the Layout pane.

Forms Builder Version 3.6.1 69 Help Guide

Property Required Description

Form Name Yes The Form Namewill be the name of the State in a workflow. The Form Name is not edit-
able after the initial save. Specify the value in the Property Settings pane or in the
Unsaved Changes dialog.

Id Yes Globally unique identifier (GUID) for the form. It is automatically created by Forms Builder.

Title No Displayed at the top of the form when the form is rendered. Specify the value in the Prop-
erty Settings pane or in the Unsaved Changes dialog.

Class No CSS class (or space separated classes) specific to the form. The class must be defined
in a Renderer CSS file. For more information, see Custom Styles.

Description No This is a convenience field to describe a form. Specify the value in the Property Settings
pane or in the Unsaved Changes dialog.

End State No Set to false (cleared) by default. Specify the value in the Property Settings pane or in the
Unsaved Changes dialog.

If you select this check box, the form will be available in the list of End State forms for a
sequence. Clearing the check box does not affect sequences where the form is defined as
an End State form. This only adds or removes it from the End State form list in Sequence
Designer. For more information, seeWelcome and Confirmation Forms.

Form Property Settings

Forms Builder Version 3.6.1 70 Help Guide

Property Required Description

Include in
View Sum-
mary

Yes Set to true (selected) by default. If the View Summary component is present in a
sequence, the form will be included in the forms rendered by the component. Clear this
check box if you do not want to include this form in the View Summary.

Forms Builder 3.4 and later provides enhanced validation when saving a sequence. A
sequence cannot be saved if at least one form in the sequence has a View Summary com-
ponent, but the Include in View Summary property is not selected on any of the forms in
the sequence.

Form Tag
Management

No Use this field to create a tag or associate an existing tag with the form. The assigned tags
are available for selection in the Forms flyout andmake it easier to locate forms.

l To create a tag, type the tag name in the Form TagManagement field, click Add
Tag, and save the form.

l To find a tagged form, on the Forms fly-out menu, click the Select Form Tags to
Search field, and select a tag. The tag will be used to filter the list of forms.

Forms Builder Version 3.6.1 71 Help Guide

Fields
The Fields tab in Form Designer enables you to find the database fields that can be used when building forms. The
steps are as follows:.

1. Select a database provider. See Select the Database Provider.

2. Select an entity, See Find Fields in an Entity.

3. Locate the desired field in the Field Properties pane, See Search for Fields and Show All Fields.

4. Drag the field into the Layout pane.

Note: You must drag a control/field over another control. If it is in the top half of an existing control, it will be
inserted before, if in the bottom half, it will be inserted after. You cannot drag over an empty space.

5. Edit the property settings as needed. See Control Property Settings.

Select the Database Provider

If Forms Builder is used with multiple database providers, the first step is to select the provider, e.g., CRM for Cam-
pusNexus CRM or Student for CampusNexus Student. The database provider selection determines which fields are
available for use when building forms. If only one database provider is available, the <Select Provider> list will not be
displayed.

When CampusNexus Student is the database provider, the list of entities on the Fields tab shows entities such as
Admissions Deposits, Applicant Areas of Study, Applicants, and so on.

Forms Builder Version 3.6.1 72 Help Guide

When CampusNexus CRM is the database provider, the list of entities on the Fields tab shows entities such as
Address Type, Area, Area of Interest, and so on.

In Forms Builder 3.5 and later, the list of entities displayed for the Student and CRM databases is configured using
the Entity and Entity Properties Visibility option. See Settings.

Find Fields in an Entity

1. Click the Fields button. The Entities drop-down list is activated (replacing the search field).

2. Select an entity from the Entities drop-down list. The Field Properties pane displays the fields associated
with the entity.

Depending on the selected entity, navigation properties may be available. Navigation properties signify a rela-
tionship between the selected entity and another entity in the data model. Click to expand the navigation

property entity.

Forms Builder Version 3.6.1 73 Help Guide

Search for Fields

1. Click the Search tool next to the Fields button. The Search field is activated (replacing the Entities drop-down
list).

2. Enter the first 3 characters of a field name in the Search field. The Field Properties pane displays all instances
of the field grouped by entities.

Depending on the selected entity, navigation properties may be available. Navigation properties signify a rela-
tionship between the selected entity and another entity in the data model. Click to expand the navigation

property entity.

Show All Fields

The Show All Fields check box controls whether a subset or the entire list of fields (categorized by entities) in the Cam-
pusNexus data model is exposed.

The Show All Fields check box is cleared by default. When cleared, a prescribed list of entities is exposed. The pre-
scribed list of entities is aligned as much as possible with what is exposed in Forms Builder 2.x.

In Forms Builder 3.5 and later, the list of entities displayed for the Student and CRM databases is configured using
the Entity and Entity Properties Visibility option. See Settings.

Forms Builder Version 3.6.1 74 Help Guide

Components
The control types listed on the Components tab in Form Designer greatly enhance the flexibility of Forms Builder.
The Components tab provides control types such as drop-down lists, grids, date pickers, hyperlinks, text areas, and
more. The properties of these controls can be customized as needed.

You can drag the controls from the Components tab into the Layout pane and build forms that include both custom
controls and controls based on fields/entities of the CampusNexus data model.

Note: You must drag a control/field over another control. If it is in the top half of an existing control, it will be inser-
ted before, if in the bottom half, it will be inserted after. You cannot drag over an empty space.

The properties of the control types listed on the Components tab can be bound to workflows using arguments. For
more information, see Binding.

Forms Builder Version 3.6.1 75 Help Guide

Binding

Definitions

The process of associating an attribute with a name (or method) is called binding. An attribute can be classified
according to the time during the execution process when it is bound to a name. Binding times can be classified into
two categories: static binding and dynamic binding.

Static binding occurs prior to the execution. Static binding occurs when the code is compiled.

Dynamic binding occurs during the execution. Dynamic binding occurs at run time when a function is called or a
value is assigned to variable.

An attribute that is statically bound is a static attribute, while an attribute that is dynamically bound is a dynamic
attribute.

Binding in Forms Builder

In Forms Builder we refer to a bound property when a property value is set by a workflow value before the form is
rendered. A property is dynamically bound if a property value, when set, can be changed by some other component,
custom JavaScript, or data entry after the form is rendered.

Initial values can be set using bindings. For bound properties, initial values can be set with custom JavaScript, (see
Set Default Values for Form Fields), as long as the value is set before the form renders (e.g., in the previous form).
For dynamically bound properties, initial values can be set in the same form.

Model Property and Arguments

Component properties can be bound to workflows by specifying a value for theModel property. The workflows for
form sequences can then be manipulated using activities and VB code to implement specific business rules.

In addition to the Model property, other properties can be bound to workflows. For example, you can set default val-
ues for controls, validate input, make controls visible or invisible depending on conditions defined in the workflow,
and so on.

The binding of properties is done using arguments. The arguments created in Form Designer and Workflow Com-
poser enable the flow of data into and out of Forms Builder and workflow activities.

The syntax for bindings is: vm.models.<argument> where <argument> is case sensitive and must be unique on
the form and within the sequence.

When binding controls, String and Integer properties such as Tooltip and MinValue require the Model value to be
enclosed in double curly braces, for example, {{vm.models.myTooltip}} for Tooltip or {{vm.-
models.myMinValue}} for a Text Box of type Number. Boolean properties do not need the curly braces, for
example, vm.models.myRequired.

Forms Builder Version 3.6.1 76 Help Guide

Specify Model Value and Create Argument

1. In Form Designer, specify a value for the Model property (vm.models.<argument>).

Keep in mind that arguments are passed in JSON format and that JSON elements are case sensitive.
Be sure to match the casing of argument names in Workflow Composer and Form
Designer.

2. Specify bindings for any other properties as needed and save the form.

3. In Sequence Designer, add the form to a sequence and save the sequence.

4. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

5. In Workflow Composer, add an argument with the following attributes:

l Name: Use the <argument> value specified in Form Designer.

l Direction: Use the In/Out direction.

l Argument type: Select the appropriate data type for the data that is passed in from Forms Builder
(e.g., Boolean, String, DateTime).

Every workflow for a form sequence contains the formInstance, entity, and event arguments which are created auto-
matically by Forms Builder.

Default Arguments

Forms Builder 3.5 or later creates default arguments in Workflow Composer for most of the component properties
including the Model bindings on initial save of the sequence. Bindings that are added to forms after the initial save
of the sequence must be added manually in Workflow Composer.

The default arguments include the In/Out direction and the argument type appropriate for the component.

Forms Builder Version 3.6.1 77 Help Guide

Component
Default Argument Type in
Forms Builder 3.5 and
later

Comments

It is always good practice to review all argument types to ensure that there are no issues, especially for
complex object types in Grids and Calendars. You must update the argument type for query initialized Cal-
endar and Grid components, otherwise the sequence will fail on load.

Calendar/Scheduler String[]

Calendar/Scheduler
with Model Data

SerializableDynamicObject
[]

Calendar/Scheduler
with OData Query

String[] Update the string array to specify the entity type, for example,
CRMEventEntity[].

Checkbox Boolean

Date Picker DateTime If the Required property is set to false, the default argument
type is Nullable<DateTime>.

Date Time Picker DateTime If the Required property is set to false, the default argument
type is Nullable<DateTime>.

Drop-down List Int32 If the Lookup ValueMember is an Id, the default argument is
Int32, otherwise it is String.

Drop-down List with
Value List of type
"Value List"

String and Seri-
alizableDynamicObject[]

Use arguments of type String for selections and Seri-
alizableDynamicObject[] for a full custom value list.

Drop-down List with
Value List of type
"Workflow Initialzed
List"

String Verify and/or update the argument type on a case by case
basis.

Grid String[] Grid is only component that doesn’t give a validation warning
for an empty Model binding. When aModel binding is not spe-
cified, the default workflow argument is not created.

Grid with Model Data SerializableDynamicObject
[]

Grid with OData Query String[] Update the string array to specify the entity type, for example,
StudentRelationshipAddressEntity[].

Masked Text Box String

Multiselect Int32[] If the Lookup ValueMember is an Id, the default argument is
Int32[], otherwise it is String[].

Default Argument Types for Components

Forms Builder Version 3.6.1 78 Help Guide

Component
Default Argument Type in
Forms Builder 3.5 and
later

Comments

Multiselect with Value
List of type "Value List"

String[] and Seri-
alizableDynamicObject[]

Use an argument of type String[] for selections and Seri-
alizableDynamicObject[] for a full custom value list.

Multiselect with Value
List of type "Workflow
Initialized List"

String[] Verify and/or update the argument type on a case by case
basis.

Numeric Text Box Int32 If the Required property is set to false, the default argument
type is Nullable<Int32>.

Radio Button String

Single-select Search Int32 If the Lookup ValueMember is an Id, the default argument is
Int32, otherwise it is String.

Text Box String

Time Picker DateTime If the Required property is set to false, the default argument
type is Nullable<DateTime>.

All other Components String Verify and/or update the argument type on a case by case
basis.

Note:

If the same argument is used with different casing in multiple forms within a sequence, a default argument will be
assigned only to the first occurrence.

Example:

Form A in sequence A has the argument: vm.models.verify

Form B in sequence A has the argument: vm.models.Verify

Each component has its own unique id and should have a unique binding. This is currently not validated in Workflow
Composer.

Forms Builder Version 3.6.1 79 Help Guide

SerializableDynamicObject

When a component in Forms Builder contains properties which are not defined in a known type, the Model value
needs to be bound to an argument of type SerializableDynamicObject[] (which is an array of Seri-
alizableDynamicObject objects).

What exactly is a serializable dynamic object array? Let's break it down.

Dynamic Objects

Dynamic objects expose properties at run time, instead of at compile time. This enables you to create objects with
property names that are not previously defined.

For example, you may have data such as XML or JSON where the members aren’t known ahead of time. The
dynamic object type enables you to work with the objects and access their properties at run time.

Serializable Objects

An object can contain named properties with values that can themselves be objects or arrays. When an object is seri-
alizable, it can be converted to a string representation of the object. A string, as a sequence of characters, is easily
transported across the Internet through web services. At its destination, it can be deserialized into the original
object. The most efficient string representation of an object is a JSON string and is the format mainly used in Forms
Builder.

Dictionary Objects

A Dictionary object is used to store information in name/value pairs (sometimes referred to as key and item value).

Since a dynamic object has properties whose names are not known until run time, a dictionary allows us to store the
property name as a string (the key) and its value. Its value must be a known primitive type, like a string, integer, byte,
etc., because these are easily deserialized. A SerializableDynamicObject has a Dictionary property called “DataDic-
tionary”.

As an example consider an object that has the following two properties with values.

“Property1” : “Value1”,

“Property2” : 234

Assuming an argument with name “mySerializableDynamicObject”, the values of the original object from the form
web page can be accessed in a workflow as:

mySerializableDynamicObject.DataDictionary(“Property1”) => “Value1” (a string)

mySerializableDynamicObject.DataDictionary(“Property2”) => 234 (an Int32)

Values can also be set (with an Assign activity) and sent back to the form web page.

mySerializableDynamicObject.DataDictionary(“Property2”) = 987 (In this case an Int32 integer has
been assigned.)

Forms Builder Version 3.6.1 80 Help Guide

Calendar/Scheduler

You can use the Calendar/Scheduler component to design forms with a calendar control that is populated with
events retrieved from the CampusNexus CRM or CampusNexus Student database. The rendered form will enable
users to register for an event by clicking a link in the calendar control.

Note: The calendar can be read-only or editable. Added entries can be determined by their Id value. Updated and
deleted entries can only be determined by storing the original items to a separate list and comparing to the updated
list after the user interaction with the calendar is complete.

Enhancements in Forms Builder 3.5 and Later

The code for the Calendar/Scheduler component was completely revised to provide enhanced functionality. Several
properties related to time zone offsets were added (see Time Zone properties), the Group Header Template prop-
erty was added, the Model and Model Data properties were added, properties to map data property names to Cal-
endar/Scheduler built-in names were added, and the Autobind and Data Source properties were removed.

When you drag and drop the Calendar/Scheduler into the Layout pane, the underlying functionality will be that of
the new component. Existing forms that already include the Calendar/Scheduler continue to execute the previous
version of the code. For these forms, if you want to use the enhanced functionality, remove the Calendar/Scheduler
from the previously created form and then re-drag and drop the Calendar/Scheduler into the Layout pane.

Mapped Properties

The following properties were added in Forms Builder 3.5 to map built-in names of the Calendar/Scheduler control
to the names of OData properties. The mapped properties allow for field names coming from an OData query to
not match hard-coded values, i.e., the event fields can be "mapped" to new values.

Component Property Default Mapped to

Mapped Description EventDescription description

Mapped End EventEndDate end

Mapped ID EventId id

Mapped Start EventStartDate start

Mapped Title EventName title

Mapped URL EventUrl eventUrl and sequenceUrl

Mapped Properties

Example

When a CRM query for events returns the Event Data URL as "RegistrationURL", the Mapped URL property would be
updated to "RegistrationURL".

Forms Builder Version 3.6.1 81 Help Guide

When mapped names are matched to data properties in an OData query, the properties in the OData query are not
case sensitive because SQL is not case sensitive.

When mapped names are used in templates, they are case sensitive. When the mapped names are matched, they
create properties which will be used in the templates. The default properties in templates are cased as follows:

l start
l end
l id
l description
l title
l eventUrl (also "sequenceUrl" which is the same property with a different variable name. It is maintained for

compatibility with existing forms.)

Either the property name or the mapped name can be used in a template. The start, end, and id properties are not
usually used in a template but are necessary to render the Calendar/Scheduler. You can use any other property
name found in the data in a template. No mapping is necessary for them.

All mapped value properties need tomatch templates, Model Data references, and/or OData query result fields.

Basic Properties for a Calendar/Scheduler

Since the Calendar/Scheduler has an overwhelming set of properties, we have added the steps to build a basic Cal-
endar/Scheduler and provided examples of property settings to initialize a calendar control.

l Creating a Minimal Calendar/Scheduler
l Calendar/Scheduler Initialized by Model Data
l Calendar/Scheduler Initialized by OData Query

For workflow arguments used with the Calendar/Scheduler in Forms Builder 3.5 and later, see Default Argument
Types for Components.

Control Property Settings

Forms Builder Version 3.6.1 82 Help Guide

Rendered Component

Forms Builder Version 3.6.1 83 Help Guide

Properties

The Calendar/Scheduler component provides numerous property settings, the majority of which are for more com-
plex scenarios and are not needed for a simple calendar. The default component has an example of the only prop-
erties that are needed. The following descriptions reflect the rollover text in the Property Settings pane.

Properties values in quotes must use double quotes. Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

l All Day Event Template is the template used to render "all day" scheduler events. The fields which can be
used in the template are:

o description - the event description (String)

o end - the event end date (Date)

o isAllDay - if true, the event is "all day" (Boolean)

o resources - the event resources (Array)

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 84 Help Guide

o start - the event start date (Date)

o title - the event title (String)

l All Day Slot — If set to true, the scheduler will display a slot for "all day" events. Default: false.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Auto Bind— In Forms Builder 3.5, this property is removed. It is always set to true.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Current Time Marker — If this property is set to true, the "current time" marker of the scheduler will be dis-
played. Default: false.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Current Time Marker Update Interval — This is the update interval of the "current time" marker in mil-
liseconds. Default: 100000 (10 seconds)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Current Time Marker Use Local Timezone — If this property is set to false, the "current time" marker will
be displayed using the scheduler time zone. Default: true

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 85 Help Guide

<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Date sets the current date of the event scheduler. The date is used to determine the period which is dis-
played. If date is not specified, the current date is assumed.

To provide forward compatibility, the date string should be ISO 8601 compatible format, e.g., 2017-09-23
(which is a universal non-ambiguous format).

See Telerik Scheduler documentation for more general information on the Scheduler.

l Date Header Template is the template used to render the date header cells. Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Default Event Url — If no Event Url is contained in the provider event data, this URL will be used for the
event.

The provider EventId will be added to the end of the URL as ?EventId=27 or &EventId=27. The former will
occur if the URL ends with a / or ? and the latter otherwise. A workflow can use it to look up the event.

This information will be available in the workflow as formInstance.QueryParams.DataDictionary("EventId"),
e.g.,

o http://myserver/#/renderer/27/?EventId=1020 or

o http://myserver/#/renderer/27/?Mydata=xxxx&EventId=1020

l Delete Confirmation — If this property set to true, the scheduler will display a confirmation dialog when the
user clicks the "destroy" X button on an event. If this is neither true nor false, then a value is interpreted as a
string value that becomes the confirmation message. Default: true.

o This property is not used for event calendars where Editable is false.

o This property is not bindable.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Create — If this property is set to true (default), the user can create new events. This property is not
used for event calendars where Editable is false. This property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Destroy — If this property is set to true (default), the user can delete events. This property is not used
for event calendars where Editable is false. This property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 86 Help Guide

l Edit Move — If this property is set to true (default), the scheduler allows event moving. Dragging the event
changes the start and end time. This property is not used for event calendars where Editable is false. This
property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Recurring Events — This property sets the edit mode for recurring events. The available modes are:
"dialog" (default), "occurrence", and "series". This property is not used for event calendars where Editable is
false. A blank Edit template will contain this property.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Resize — If this property is set to true (default), the scheduler allows event resizing. Dragging the resize
handles changes the start or end time of the event. This property is not used for event calendars where Edit-
able is false. This property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Template allows the user to edit the template which renders the popup editor. Template is an HTML
string.

The default template is:

<h3 style="margin-left: 100px">Add or Edit meeting</h3>
<div class="k-edit-label">

<label for="title">Title</label>
</div>
<div data-container-for="title" class="k-edit-field">

<input id="title" name="title" class="k-input k-textbox" required="required"
type="text" data-required-msg="Title is required for an event" />

</div>
<div class="k-edit-label">

<label for="start">Start</label>
</div>
<div data-container-for="start" class="k-edit-field">

<input id="start" data-role="datetimepicker" name="start" />
</div>
<div class="k-edit-label">

<label for="end">End</label>
</div>
<div data-container-for="end" class="k-edit-field">

<input id="end" data-role="datetimepicker" name="end" />
</div>
<div class="k-edit-label">

<label for="eventUrl">Sequence URL</label>
</div>
<div data-container-for="eventUrl" class="k-edit-field">

<input name="eventUrl" data-bind="text:eventUrl" class="k-input k-textbox" name-
e="eventUrl" required="required" data-required-msg="Event URL is required for an
event." type="url" data-url-msg="URL must be a validly formatted URL" />

</div>

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 87 Help Guide

Note how the title has a validation and the way “required” has a message to override the default validation
message. Note also that eventUrl has two validations, a “required” and a “url” type validation which validates
a URL. Both have override messages for their validation. It would be unusual to use anything except the
standard HTML5 validations. Special code would be required for custom validations, so this would take some
JavaScript expertise. See Custom Validations for more information about validation.

This default template matches the Event Template and the Schema Model for property names. Failure to
match property names to mapped names or use of properties not defined in the model can lead to JavaScript
errors during render.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Edit Update — If this property is set to true (default), the user can update events. This property is not used
for event calendars where Editable is false. This property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Editable — If this property is set to true, the user can create new scheduler events and modify or delete exist-
ing events. For event calendars this is normally false. Default: false.

o This property is not bindable.

o When an event is editable, it cannot use custom property names. It must use the start, end, id, title,
and description properties.

Note: If a user clicks Cancel while adding or editing a new appointment, it is deleted. If user clicks Cancel on an
existing appointment, the popup editor closes without saving changes.

See Telerik Scheduler documentation for more general information on the Scheduler.

l End Time sets the end time of the week and day views. Overridden by data from the schedule provider if sup-
plied.

Example: 2016-10-1 19:00 or 2016-10-1 7:00 PM.

You must specify a date with the time because the time by itself will not be parsed correctly.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Event Template is the template used to render the scheduler events. The fields which can be used in the
template are:

o description - the event description (String)

o end - the event end date (Date)

o resources - the event resources (Array)

o start - the event start date (Date)

o title - the event title (String)

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 88 Help Guide

Additional fields defined in the Event data can be used in a template. They MUST match the properties
returned in the data. Additional properties cannot be used if Editable is true without defining them in the
Schema Model.

Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

Example

<div class="event-template">
 <p>
 #: title #

 Registration

 </p>
 <p>
 #: description #
 </p>
</div>

Note that if this property (or any other in this template) is missing in the data (normal), it will cause an error.
This should match the data property that you are using for this value. The Mapped URL default is “EventUrl,
so this matches the template.

l Footer — If this property is set to false, the footer of the scheduler will not be displayed.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Footer Command sets the command which will be displayed in the scheduler footer. Currently, only the
"workDay" option is supported. If the option is set to false, the "workDay" button will be removed from the
footer.

o Properties values in quotes must use double quotes.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Group Header Template is the template used to render the group headers of scheduler day, week,

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 89 Help Guide

workWeek, and timeline views. Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Group Object sets the configuration of the scheduler resource(s) grouping. Properties values in quotes must
use double quotes.

This is an extensive object with many properties. See Telerik Scheduler documentation for more general
information on the Scheduler.

l Height sets the height of the widget. Numeric values are treated as pixels. Default: 600.

o If it is bound it must begin with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals or underscore.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Major Tick sets the number of minutes represented by a major tick. Default: 60.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Major Time Header Template is the template used to render the major ticks. Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Mapped Description – sets the data property name that maps to “description”. The default is “EventDe-
scription”.

l Mapped End – sets the data property name that maps to “end”. The default is “EventEndDate”. “end” is a
built-in name required by the Calendar/Scheduler, so if your data does not have this name, set the mapped
name.

l Mapped ID – sets the data property name that maps to “id”. Default is “EventId”. The “id” in the event data
must be unique for every event, or the calendar may fail to work as expected.

l Mapped Start - sets the data property name that maps to “start”. The default is “EventStartDate”. “start” is a
built-in name required by the Calendar/Scheduler, so if your data does not have this name, set the mapped
name.

l Mapped Title – sets the data property name that maps to “title”. The default is “EventName”.

l Mapped URL – sets the data property name that defines the data item that contains a URL to which the

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://www.guidgen.com/
https://guidgenerator.com/
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 90 Help Guide

EventId= in the data is appended. The default is “EventUrl”, e.g., the data “EventUrl”:”ht-
tp://mysite.com/#/renderer/myform” will become http://mys-
ite.com/#/renderer/mysequence?EventId=2232. This “EventId” can be used in a workflow to look up the
original event to get more information than was possible to put in the scheduler. Obviously, you can add your
own parameters to cause the workflow to do something based on a parameter value. This URL can be embed-
ded in an <a> HTML link in the template.

l Max Date constrains the maximum date which can be selected via the scheduler navigation. To provide for-
ward compatibility, the date string should be ISO 8601 compatible format. e.g. 2017-09-23 (which is a uni-
versal non-ambiguous format).

See Telerik Scheduler documentation for more general information on the Scheduler.

l Messages Object — The configuration of scheduler messages. Use this option to customize or localize
scheduler messages.

Properties values in quotes must use double quotes.

This is an extensive object with many properties. See Telerik Scheduler documentation for more general
information on the Scheduler.

l Min Date constrains the minimum date which can be selected via the scheduler navigation.

To provide forward compatibility, the date string should be ISO 8601 compatible format, e.g., 2017-09-23
(which is a universal non-ambiguous format).

See Telerik Scheduler documentation for more general information on the Scheduler.

l Minor Tick Count sets the number of time slots to display per major tick. Default: 2.
If set, the minorTickCount value should be set to a number greater than 0.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Minor Time Header Template is the template used to render the minor ticks. Template is an HTML string.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Mobile Rendering — If set to true and the Calendar/Scheduler is viewed on a mobile browser, it will use
adaptive rendering. The value can be set to a string "phone" or "tablet" to force the widget to use adaptive
rendering regardless of browser type. Default: false.

See Telerik Scheduler documentation for more general information on the Scheduler.

Forms Builder currently does not support rendering of the Calendar/Scheduler component on mobile
devices.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 91 Help Guide

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

Note: Editing the Calendar/Scheduler currently does not update the Model value. This functionality will be
added in a future release.

l Model Data — The initial data specified as a JSON object. This will be ignored if data is directly provided by an
OData Query from a data provider or when a bound Model is provided.

Property names and values must use double quotes. Names of properties must match those in a template if
they are to be used by the template. The default template has several default property names.

Dates are entered as ISO 8601 compatible strings and Date objects will be created out of them, e.g., 2016-06-
13 or 2016-06-13T09:08:01-05:00 (Google ISO 8601 for explanation).

See Telerik Scheduler documentation for more general information on the Scheduler.

Note: When the Model Data property is used in conjunction with the Locale component and the user nav-
igates back to select a different Locale, the data displayed in the sequence will not be updated to reflect the
new Locale selection.

l OData Query — The URL specific part of an OData URI. Base URL and Product will be supplied by the con-
figuration. Does not include the web address or product, e.g., Students?$top=10. This part is the imple-
mentation of the specifications for the provider API to get event data.

l OData Translation Members is a comma separated list of property names in an OData query string to be
translated. You should always validate the query will work in a browser. Only basic errors can be detected in
Form Designer.

l PDF Object — Configures the Kendo UI Scheduler PDF export settings and is specified by a Json string.

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 92 Help Guide

o Must be specified as a JSON string.

o Properties values in quotes must use double quotes.

This is an extensive object with many properties. See Telerik Scheduler documentation for more general
information on the Scheduler.

l Product indicates the product from which OData query results are returned. Select from:

o Student
o CRM
o Occupation Insight

The selected product must be configured in the <products> section of the Renderer web.config file.

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Select "Occupation Insight" in the Product property if the source of the query will come from a different data
source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Resources Object — The configuration of the scheduler resource(s). A scheduler resource is optional
metadata that can be associated with a scheduler event. Must be specified as a JSON string.

Properties values in quotes must use double quotes.

Overridden by data from the schedule provider if supplied.

This is an extensive object with many properties. See Telerik Scheduler documentation for more general
information on the Scheduler.

l Schema Model is specified as a JSON object. The Schema Model is only necessary if using a template such as
the Event Template and you wish to add or edit events in the calendar with anon-standard data property.
Fields that are standard properties like id, start, end, title, or description, need not be redefined in
the schema to be edited; however, non-standard properties (like eventUrl) will throw an error (seen with an
F12 console).

A Schema Model must contain all non-standard properties used in the Event Template. See documentation
for the scheduler for the required format of the schema. A default one is provided and includes eventUrl,
which is a non-standard property that matches the property used in the default Event Template. id, title,
start, end, and description are built-in and only need to be redefined to override them with different

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 93 Help Guide

values. If the data source contains properties with their mapped name (see Mapped Properties), they are pop-
ulated by those values.

See Telerik Scheduler documentation for more general information on the Scheduler.

Example

The Schema Model JSON object defines the dataSource schema.model. The JSON which matches the default
Event Template is:

{
"id": "id",
"fields": {

"id": {
"type": "number"

},
"title": {
},
"start": {

"type": "date"
},
"end": {

"type": "date"
},
"description": {},
"sequenceUrl": {}

}
}

This JSON code defines two properties: id and fields. The latter is an object which defines each field in an
Event Template. Experimentation has shown that it is not necessary to define the built-in fields id, start,
end, and the optional title and description, unless you want to add something to the definition like a
default value or a type. But you do have to define additional fields you want to use like sequenceUrl. Cas-
ing is important. For more information, see https://docs.telerik.com/kendo-ui/ap-
i/javascript/data/model/methods/define

The properties that can be used for each field are type, editable, nullable, from, and validation.
However, validation is not useful unless there is some active JavaScript to call the validator.validate()
method. Instead validation is defined with attributes in the Edit Template. See Edit Template above.

About the only one that is necessary in most circumstances is type, but it defaults to “string”, which is why
some have an empty object definitions.

The Editable property has a warning on it. If it is set to true, the Schema Model should be defined, otherwise
you will get an F12 error when you use an undefined template variables during add or edit, i.e.,
sequenceUrl is undefined, but the built-in ones id, title, description, start, and end can be
redefined along with sequenceUrl. If your data uses the mapped names, the built-in ones will be populated
with values from them.

l Selectable Event — If this property is set to true, the user can select scheduler cells and events. By default,

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/data/model/methods/define
https://docs.telerik.com/kendo-ui/api/javascript/data/model/methods/define

Forms Builder Version 3.6.1 94 Help Guide

selection is disabled. This is not currently used by any feature and can be left false. This property is not bind-
able.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Show Work Hours — If this property is set to true, the view will be initially shown in business hours mode.
By default, the view is displayed in full day mode.

o This property is not bindable.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Snap To Slot — If this property is set to true, the scheduler will snap events to the nearest slot during drag-
ging (resizing or moving). Set it to false to allow free moving and resizing of events. For event calendars,
where Editable is false, this is not used.

o This property is not bindable.

o (true and false must be all lowercase)

See Telerik Scheduler documentation for more general information on the Scheduler.

l Start Time — The start time of the week and day views. The scheduler will display events starting after the
startTime, e.g., "2016-10-22 9:00 PM or 2016-10-22 21:00".

You must specify a date with the time because the time by itself will not be parsed correctly.

To provide forward compatibility, the date string should be ISO 8601 compatible format. e.g. 2017-09-23
(which is a universal non-ambiguous format).

See Telerik Scheduler documentation for more general information on the Scheduler.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Time Zone — The time zone which the scheduler will use to display the scheduler appointment dates. Setting

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 95 Help Guide

this pins the browser relative time zone no matter where the browser is.

When set and the date does not contain an offset, then the time will not be changed and will be the same in
any browser worldwide.

Examples:

o "2018-06-15T17:00:00" or "2018/06/15 05:00 PM" which is 5 PM will remain 5PM in every time zone.

This is also true if a time zone is present and "Time Zone - Ignore Input" is true, because the offset will
be removed first.

Otherwise, if an offset is present in the date, then the date-time will be translated to the set time zone
first. This could change the date.

o "2018-06-15T23:00:00-04:00" which is 11 PM EDT (Florida during daylight saving hours) and the set
time zone is PST8PDT (California), then this will be translated to "2018-06-15T02:00-07:00" which is 2
AM the next day.

The scheduler will display this as 2AM in any browser worldwide.

If not set, the current time zone of the browser is used. This means that while date-times without off-
sets will not be affected, date-times with offsets will be different in different browser time zones,
because the time will be translated to the local time zone.

o "2018-06-15T17:00:00-08:00" which is 5 PM PDT, will be translated to 8PM EDT for a browser in Flor-
ida, but midnight in London.

A list of IANA Canonical, Alias and Deprecated time zones can be found here.

The list of actual supported time zones is available in the time zone property of the moment-timezone
source.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Time Zone - Ignore Input — If true, a time zone (offset) that is present on the incoming data will be
removed.

Example:

"2018-06-15T17:00:00-04:00" which represents 5PM EDT (daylight savings date), will be truncated to "2018-
06-15T17:00:00". This actually represents 5PM in any time zone.

This property is not bindable.

Use cases:

o Set this property to true when the form uses an OData query to retrieve CRM events for an onsite
event such a as fixed time onsite campus orientation. A person in a different time zone would need to
show up at that fixed time in the destination time zone.

o Set this property to false when the form is used for registration to an online event where you want the

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://github.com/moment/moment-timezone/blob/develop/data/packed/latest.json
https://github.com/moment/moment-timezone/blob/develop/data/packed/latest.json
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 96 Help Guide

user to see the appropriate time zone in the user's location. Online the time is going to be different in
each time zone, but the same universal time for everyone.

l Time Zone - Remove Output — If true, the time zone is removed from the model date-time.

Example:

"2018-06-15T17:00:00-04:00" which represents 5PM EDT (daylight savings date), will be truncated to "2018-
06-15T17:00:00". This actually represents 5PM in any time zone and information on which time zone it might
have been created in is not available.

o This property is not bindable.

Use cases:

The setting for this property would almost always match the Time Zone - Ignore Input setting, i.e., both
true or both false. But if desired, you can set the properties differently.

l Toolbar Object — List of commands that the scheduler will display in its toolbar as buttons. Currently sup-
ports only the "pdf" command. Properties values in quotes must use double quotes.

See Telerik Scheduler documentation for more general information on the Scheduler.

l View For Agenda Selection — On an agenda view, when a non-editable event is clicked, this is the view that
will be shown, if available.

l View For Month Selection — On a month view, when a non-editable event is clicked, this is the view that
will be shown, if available.

l View For Week Selection — On a week or workWeek view, when a non-editable event is clicked, this is the
view that will be shown, if available.

l Views Object — The views displayed by the scheduler and their configuration. The array items can be either
objects specifying the view configuration or strings representing the view types (assuming default con-
figuration).

o If not specified, the Kendo UI Scheduler widget displays "day" and "week" view.

o Properties values in quotes must use double quotes.

o If using the "eventTemplate" property, it is an HTML string.

o If single quotes are required in HTML elements, use '

This is an extensive object with many properties. See Telerik Scheduler documentation for more general
information on the Scheduler.

Example 1

This example shows 5 views: day, workweek, week, month, and agenda in JSON format. Each of them can be a
simple string if no other properties are required. In this example both month and agenda have extra prop-
erties, so they are set as an object with properties, 2 in each case. “type” is required to set the view name.

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 97 Help Guide

Month is selected by default by the “selected”: true. For other properties which can be added to each of
them, refer to the Telerik documentation for views property of the Scheduler.

[
"day",
"workWeek",
"week",
{

"type": "month",
"selected": true

},
"agenda",
{

"type": "timeline",
"eventHeight": 50

}
]

Example 2

In this example, day and month have templates for different views (others could too instead of the default).

Note: Since the entire property value is in single quotes, single quotes cannot be used again inside the tem-
plate. Anywhere a single quote is needed inside double-quote HTML elements, the HTML substitute '

is used.

[
{

"type": "day",
"eventTemplate": "<div class='event-template'><p>Click this link to

go to <a href='#= eventUrl
#' target='_blank'>Registration</p></div>"

},
"workWeek",
"week",
{

"type": "month",
"selected": true,
"eventTemplate": "<div class='event-template'><p><span class-

s='event-template-title' title='#: title #'>#: title
#</p></div>"

},
"agenda",
{

"type": "timeline",
"eventHeight": 50

}
]

l Visible makes the control visible or hidden.

Forms Builder Version 3.6.1 98 Help Guide

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Width — Sets the width of the widget. Numeric values are treated as pixels. This property is not bindable.

See Telerik Scheduler documentation for more general information on the Scheduler.

l Work Day End— Sets the end of the work day when the "Show business hours" button is clicked, e.g.,
"2016/10/1 19:00".

See Telerik Scheduler documentation for more general information on the Scheduler.

l Work Day Start — Sets the start of the work day when the "Show business hours" button is clicked, e.g.,
"2016/10/1 09:00 AM".

See Telerik Scheduler documentation for more general information on the Scheduler.

l Work Week End— Sets the end of the work week (index based). Default: 5

See Telerik Scheduler documentation for more general information on the Scheduler.

l Work Week Start — Sets the start of the work week (index based). Default: 1

See Telerik Scheduler documentation for more general information on the Scheduler.

https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 99 Help Guide

Creating a Minimal Calendar/Scheduler

The properties required for a minimal Calendar/Scheduler are as follows (all properties not set use default values).

Step 1: Decide what data to display and understand the data

Once you understand what your data and its properties are, set one of three properties.

l Model Data

Example: Calendar/Scheduler Initialized by Model Data

If you are hard-coding the events on a calendar, create the data in this property. An example of data that
matches the default Event Template follows. If you copy this data and use Chrome to paste it in the JSON
Viewer or JSON Validator on the site https://codebeautify.org/, you will find that it is well formed data.

It is critical that the values used in the Event Template property match properties in your data. If that is not
the case, you must use the Mapped Properties to define the required start, id, and end properties. The title,
description, and eventUrl should be mapped as well. The template can use either the built-in id, end, start,
title, description, eventUrl or the mapped names (You must use the built-in ones if the calendar is editable).
The mapped names are not case sensitive, but their use in templates is. You will get errors if you use template
names that do not exactly match either built-in properties or data properties.

This data is an object signified by matching braces {} with one property “data”. “data” is an array signified by
matching square brackets [] that contains comma-separated objects. Each object in the array has 6 prop-
erties. Notice that commas separate multiple objects and multiple properties within the objects.

For information on JSON syntax, search the internet for JSON Syntax. A good introduction is at
https://www.w3schools.com/Js/js_json_intro.asp. Click Next to see JSON Syntax rules.

{
"data": [

{
"id": 1,
"start": "2018/6/25 10:00 PM",
"end": "2018-06-25T23:00",
"title": "College Fair",
"description": "This is an all day event",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1224"

},
{

"id": 2,
"start": "2018-06-25T22:00-04:00",
"end": "2018-06-25T23:30-04:00",
"title": "Career Fair",
"description": "This is a meeting",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1234"

},
{

"id": 3,

https://codebeautify.org/
https://www.w3schools.com/Js/js_json_intro.asp

Forms Builder Version 3.6.1 100 Help Guide

"start": "2018-06-25T22:00-07:00",
"end": "2018-06-25T23:00-07:00",
"title": "Climate Change: Current Policy Challenges ",
"description": "This is a meeting",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1234"

},
{

"id": 4,
"start": "2018/6/25 10:00 AM",
"end": "2018/6/25 11:00 AM",
"title": "African Heritage Celebration",
"description": "This is a meeting",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1234"

},
{

"id": 5,
"start": "2018/6/25 10:00 AM",
"end": "2018/6/25 11:00 AM",
"title": "Free Wellness Classes!",
"description": "This is a meeting",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1234"

},
{

"id": 6,
"start": "2018/6/25 11:00 AM",
"end": "2018/6/25 11:30 AM",
"title": "Philharmonic Orchestra",
"description": "This is a meeting",
"RegistrationUrl": "http://po-170.campusmgmt.com:9003/#/renderer/1234"

}
]

}

l Model

This value is set as vm.models.xxxx. The xxxx will correspond to a case sensitive argument in a workflow. The
data is retrieved from a database or built manually in a workflow variable and then assigned to an argument.
One object that can be used if the properties do not correspond to an Entity is a SerializableDynamicObject.

Example: Calendar/Scheduler Initialized by Model Data

l OData Query

The value is set with an OData query to a provider. You should build this with the provider interface as doc-
umented elsewhere and then run the query in a browser. Examine the data closely to make sure that the
Event Template and Mapped names are correct for the data. Mismatching the names used in an Event Tem-
plate to the data properties can produce hard to debug issues in running a sequence.

Example: Calendar/Scheduler Initialized by OData Query

Forms Builder Version 3.6.1 101 Help Guide

Step 2: Decide on a view

Views are constructed from a JSON object. The view name can be the string name of the view or an object with prop-
erties which define the view. Keep it simple to start. Start with one view like a day view. This is an array with only one
string that can be verified at https://codebeautify.org/.

[
“day”

]

See Telerik Scheduler documentation for more general information on the Scheduler.

Step 3: Look at your data

If your data is not today’s date, you will not see the events. Therefore, set the “Date” property to the same day as
the data you want to see. It is desirable that the date be set as an ISO 8601 compatible string because this is a uni-
versal non-ambiguous format.

Example: 2018-06-25 is always year, month, day and can always be parsed non-ambiguously.

Step 4: Decide on an event template

The default event template may not be appropriate for most cases. The template must be well formed HTML with
placeholders for the data retrieved for each event. Its display must also fit in a small space, so it can’t be a lot of
HTML. If you are creating views like a month with very little space per day, use the Event Template property on
those views to create a smaller template for them.

In the following default template, notice that the values found in the data above have placeholders bound by either
#: xxx # or #=xxx #. The #: renders the string verbatim, while the #= renders the string with HTML encoding (valu-
able if there are spaces in a URL). If you have custom classes to style the template or images, see documentation
elsewhere which describes custom styling of HTML.

Note that there is a glaring error here. eventUrl does not match any property in the data above, and the default
Mapped URL is “EventUrl”. The Mapped URL property must change to “RegistrationUrl” to match the data, oth-
erwise an error will occur. Both sequenceUrl and eventUrl will be properties in the internally parsed data, so either
can be used in the template below. And in fact, RegistrationUrl could be used instead. However, eventUrl is a special
property that causes the eventId={id from the data} to be appended to the URL. That way, the web site (or Forms
Builder Sequence) you send it to can know which event was clicked on and can look up other information about the
event.

<div class="event-template">
<p>

#: title #

Registration

</p>
<p>

#: description #

https://codebeautify.org/
https://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Forms Builder Version 3.6.1 102 Help Guide

</p>
</div>

That should be enough to view a calendar with some events on it.

Forms Builder Version 3.6.1 103 Help Guide

Calendar/Scheduler Initialized by Model Data

The initial data in the Calendar/Scheduler control can be populated using the Model Data property. In this example
the Model Data JSON object defines 6 events as shown in the Agenda view below. Each event defined in Model Data
must have at a minimum id, start, and end properties which are required to properly render the calendar.

This example also illustrates how to make a calendar entry editable and how to ignore timezones. The table lists the
properties that have been specified for this example. All other properties not listed below use the default values.

Property Value Specified

Date 2018-07-25

Edit
Create

false

Properties Specified for Calendar/Scheduler Initialized by Model Data

Forms Builder Version 3.6.1 104 Help Guide

Property Value Specified

Edit Tem-
plate

<h3 style="margin-left: 100px">Add or Edit meeting</h3>
<div class="k-edit-label">
<label for="title">Title</label>
</div>
<div data-container-for="title" class="k-edit-field">
<input id="title" name="title" class="k-input k-textbox" required="required" type="text" data-required-
msg="Title is required for an event" />
</div>
<div class="k-edit-label">
<label for="start">Start</label>
</div>
<div data-container-for="start" class="k-edit-field">
<input id="start" data-role="datetimepicker" name="start" />
</div>
<div class="k-edit-label">
<label for="end">End</label>
</div>
<div data-container-for="end" class="k-edit-field">
<input id="end" data-role="datetimepicker" name="end" />
</div>
<div class="k-edit-label">
<label for="eventUrl">Sequence URL</label>
</div>
<div data-container-for="eventUrl" class="k-edit-field">
<input name="eventUrl" data-bind="text:eventUrl" class="k-input k-textbox" name="eventUrl" required-
d="required" data-required-msg="Event URL is required for an event." type="url" data-url-msg="URL
must be a validly formatted URL" />
</div>

Edit
Update

true

Editable true

Event Tem-
plate

<div class="event-template">
<p>
#: title #

Registration

</p>
<p>
#: description #
</p>
</div>

Model vm.models.NewCalendarData2

Forms Builder Version 3.6.1 105 Help Guide

Property Value Specified

Model
Data

{
"data": [
{
"id": 1,
"start": "2018/7/25 10:00 PM",
"end": "2018-07-25T23:00",
"title": "College Fair",
"description": "This is an all day event",
"eventUrl": "http://<server>:<port>/#/renderer/3025"
},
{
"id": 2,
"start": "2018-07-25T22:00-04:00",
"end": "2018-07-25T23:30-04:00",
"title": "Career Fair",
"description": "This is ameeting",
"eventUrl": "http://<server>:<port>/#/renderer/3025"
},
{
"id": 3,
"start": "2018-07-25T22:00-07:00",
"end": "2018-07-25T23:00-07:00",
"title": "Climate Change: Current Policy Challenges ",
"description": "This is ameeting",
"eventUrl": "http://<server>:<port>/#/renderer/3025"
},
{
"id": 4,
"start": "2018/7/25 10:00 AM",
"end": "2018/7/25 11:00 AM",
"title": "African Heritage Celebration",
"description": "This is ameeting",
"eventUrl": "http://<server>:<port>/#/renderer/3025"
},
{
"id": 5,
"start": "2018/7/25 10:00 AM",
"end": "2018/7/25 11:00 AM",
"title": "FreeWellness Classes!",
"description": "This is ameeting",
"eventUrl": "http://<server>:<port>/#/renderer/3025"
},
{
"id": 6,
"start": "2018/7/26 11:00 AM",
"end": "2018/7/26 11:30 AM",
"title": "Philharmonic Orchestra",
"description": "This is ameeting",

Forms Builder Version 3.6.1 106 Help Guide

Property Value Specified

"eventUrl": "http://<server>:<port>/#/renderer/3025"
}
]
}

Product Student

Schema
Model

{
"id": "id",
"fields": {
"id": {
"type": "number"
},
"title": {},
"start": {
"type": "date"
},
"end": {
"type": "date"
},
"description": {},
"eventUrl": {}
}
}

Time Zone
- Ignore
Input

true

Time Zone
- Remove
Output

true

View For
Month
Selection

agenda

View For
Week
Selection

agenda

Views
Object

[
"day",
"week",
{ "type": "month", "selected": true, “eventHeight”: 50 },
"agenda",
{ "type": "timeline", "eventHeight": 50}
]

Forms Builder Version 3.6.1 107 Help Guide

Argument Definition in Workflow Composer (optional if it is desired to use the Model Data in the workflow as
well):

For workflow arguments used with the Calendar/Scheduler Initialized by Model Data in Forms Builder 3.5 and later,
see Default Argument Types for Components.

Forms Builder Version 3.6.1 108 Help Guide

Calendar/Scheduler Initialized by OData Query

The initial data in the calendar control can be populated using the OData Query property. In this example the OData
Query retrieves all events from the CampusNexus CRM database for a specific date.

The table lists the properties that have been specified for this example. All other properties not listed below use the
default values.

Note that the OData Query uses the value "RegistrationURL". This value is hard-coded in the CampusNexus CRM
database. The "RegistrationURL" is mapped to the "eventUrl" value using the Mapped URL property.

The remaining values in the OData Query in this example happen to match the default values of the mapped prop-
erties. EventId, EventStartDate, and EventEndDate are required to properly render the calendar.

Property Value Specified

Date 2017-10-31

Edit Create false

Event Template <div class="event-template">
<p>
#: title #
Re-
gistration
</p>
<p>#: description #</p>
</div>

Mapped Description EventDescription

Mapped End EventEndDate

Mapped ID EventId

Mapped Start EventStartDate

Mapped Title EventName

Mapped URL RegistrationURL

Model vm.models.NewCalendarQuery

Properties Specified for Calendar/Scheduler Initialized by OData Query

Forms Builder Version 3.6.1 109 Help Guide

Property Value Specified

OData Query Events?$select=
EventId,EventName,EventStartDate,EventEndDate,RegistrationURL&$top=10

Product CRM

View ForMonth Selec-
tion

agenda

View ForWeek Selec-
tion

agenda

Argument Definition in Workflow Composer:

Where Event is Cmc.NexusCrm.Events.Entities.Event

For workflow arguments used with the Calendar/Scheduler Initialized by OData Query in Forms Builder 3.5 and
later, see Default Argument Types for Components.

Forms Builder Version 3.6.1 110 Help Guide

CAPTCHA

You can use the CAPTCHA component to add a challenge-response test to a form to determine whether the user is
human. The CAPTCHA component links to the free Google reCAPTCHA service which supplies subscribing websites
with site verification challenges.

Prerequisites

1. To use the Google reCAPTCHA service, sign up for an API key pair for your site. The key pair consists of a site
key and secret key. The site key is used to display the widget on your site. The secret key authorizes com-
munication between Forms Builder and the reCAPTCHA server to verify the user's response.

2. In the Forms Builder Settings workspace, select reCAPTCHA, populate the Secret Key, Site Key, and Google
URL.

When the CAPTCHA component is added to a form, the user must select a check box labeled "I'm not a robot" and

solve a visual or auditory challenge. The user can select the challenge type by clicking the icon or the icon.
The user must complete the selected challenge before submitting the form.

The CAPTCHA verification will expire after some time and the user will need to start over if this occurs. The user will
be notified if the session expires.

In Forms Builder 3.4 and later, if a server-side validation error occurs while the user is completing the form, the
CAPTCHA component is reset, and the user is forced to resolve it.

Control Property Settings

https://www.google.com/recaptcha/admin#list

Forms Builder Version 3.6.1 111 Help Guide

Rendered Component

Visual challenge:

Forms Builder Version 3.6.1 112 Help Guide

Auditory challenge:

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 113 Help Guide

Checkbox

You can use the Checkbox component for binary choices like yes/no or true/false.

Control Property Settings

Rendered Component

Workflow Argument

For workflow arguments used with the Checkbox in Forms Builder 3.5 and later, see Default Argument Types for
Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

Forms Builder Version 3.6.1 114 Help Guide

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 115 Help Guide

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 116 Help Guide

<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Forms Builder Version 3.6.1 117 Help Guide

Credit Card Payment

You can use the Credit Card Payment component to build a form that supports credit card processing functionality
based on the Payment Card Industry Data Security Standard (PCI DSS). A requirement for PCI compliance is that
credit card information such as card number, expiration date, and CVV (Card Verification Value) is stored securely
with a PCI compliant hosting provider (i.e., not stored in the institution's database) and that the user interface of the
application, (i.e., Forms Builder) does not capture credit card information. Payflow Pro (by PayPal), ACI, and IATS are
the currently supported payment gateways for credit card payment processing.

The Credit Card Payment component is used to redirect the flow of the sequence to the hosted payment form. Data
that will be defaulted on the hosted form can also be included within the property settings of this component. The
user enters the credit card information on the payment processor's webpage. The payment is processed and a
response containing the transaction identifier is sent back to Forms Builder.

The Credit Card Payment component requires specific configuration settings in the Settings workspace of Forms
Builder and a workflow activity that captures the transaction identifier returned from the payment processor's
webpage. You also need to set up connectivity to the payment gateways and configure the hosted payment page on
the PayPal or ACI websites.

l Depending on the payment gateway used, see the following topics:

o Payment Processing with PayPal

o Payment Processing with ACI

o Payment Processing with IATS

l For details about the required workflow activity, see VerifyCardPayment.

l For an example of a form sequence with credit card processing functionality, see Credit Card Payment Form.

You can use only one Credit Card Payment component (i.e., one transaction) per sequence.

Always place the Credit Card Payment component on a separate form.

If the form contains any other fields, these fields should be read-only. Changes to those fields will not be retained
when the user returns to the form after making the payment.

Note: Credit Card Payment forms using PayPal, ACI, or IATS payment gateways will not be translated as these
vendors do not support localization at this time.

Credit Card Payment Component Properties

When you build a form sequence for credit card payment, ensure that you place the Credit Card Payment com-
ponent on a separate form, i.e., create one form to gather the payment data that will prepopulate the payment site
form (e.g., name, address, state, country, etc.) and another form for the Credit Card Payment component.

Communication to the payment site occurs on the form with the Credit Card Payment component and prior to bind-
ing any data entered on same form. Therefore, the input for name, amount, etc. must be on a previous form.

Forms Builder Version 3.6.1 118 Help Guide

Notes

l The bindings in the properties for the Credit Card Payment component correspond to arguments that need
to be created in the workflow.

l If optional fields are not specified in Forms Builder, these fields will not be prepopulated on the payment site.
The user will have to fill in the fields if the fields are configured as required on the payment site.

l For Payment Country and Payment State to be prepopulated, the names of the country/state in the insti-
tution's database need to match the lists in PayPal. If the names of the country/state do not match, the user
will have to select the values from the drop-down lists on the payment form if the fields are required for pay-
ment processing.

Example: Country must be "United States of America", not "USA".

Known Limitation: The Credit Card Payment component currently does not pass Payment Country values
other than "Unites States of America" to the PayPal site. If any other Payment Country values are specified,
either the Country drop-down list will not be displayed, or the user will have to select the country in the pay-
ment form on the PayPal site.

l In Forms Builder 3.5, the code for the Credit Card Payment component was completely revised to provide
new functionality such as the "Payment Comment" property and enhanced validation of properties/bindings.
When you drag the Credit Card Payment into the Layout pane, the underlying functionality will be that of the
new component. In existing forms that already include the Credit Card Payment, the component is auto-
matically updated to the correct new values and can be saved immediately.

Control Property Settings

Forms Builder Version 3.6.1 119 Help Guide

Rendered Component

Workflow Arguments

Forms Builder Version 3.6.1 120 Help Guide

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Payment Address is optional. If you want to prepopulate this field on the hosted payment page, enter the
binding corresponding to the card holder address. Example: {{vm.models.address}}

l Payment Amount is required. Enter the binding corresponding to the card payment amount. Example:
{{vm.models.studentEntity.myAmount}}

This property must be bound and does not take a string.

l Payment City is optional. Enter binding for city corresponding to the card holder address. Example: {{vm.-
models.myPaymentCity}}

This property must be a binding if set

l Payment Comment is optional. Enter a string or a binding for a comment which can appear in reports. This
is normally set in a workflow by binding. If it is bound, it must begin with {{vm.models. and end with }}.

Example:

You want to pass a comment indicating that the credit card payment is for a student identified by name and
student ID,

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 121 Help Guide

1. In the Payment Comment property, specify the following value:

{{vm.models.paymentComment}}

2. In the workflow for the sequence on the form prior to the form with the Credit Card Payment com-
ponent, create a paymentComment argument of type String,

Assign a value to the argument using an expression to identify an authenticated student:

"Payment for " & studentEntity.FirstName & " with id: " & studentEntity.Id

3. Save the workflow and render the sequence.

4. Complete the sequence and make a payment using a test account.

5. Log in to the payment provider's site as administrator and locate the transaction.

6. Review the transaction report and verify that the paymentComment with the student's name and ID is
included in the report.

l Payment Country is optional. Enter a string or a binding for country corresponding to the card holder
address. Example: {{vm.models.myCountry}} which can be set in the workflow. This property might be
required to be a specific string for the payment provider. See Notes.

l Payment Disabled sets the payment button or link to disabled. It is set to false by default.

l Must be true or false (default), or a binding beginning with "vm.models.".

l A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

l This property can be dynamically bound.

l An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7

Forms Builder Version 3.6.1 122 Help Guide

(>,<,!=,==,>=,<=).

l If comparing to a string, it must be in single quotes. (true or false must be all lowercase)

Use case

A form accepts credit card payments only if the user resides in the United States The Payment
Disabled value is set to (vm.models.studentEntity.CountryId !=7), where CountryId = 7 is United
States.

The workflow for the sequence has a LookupReferenceItem activity with Reference Item Type-
e=Country and ReferenceItem Id="studentEntity.CountryId.Value. If the user's stu-
dentEntity.CountryId.Value is not 7, the credit card payment option is disabled.

l Payment Disabled Reason - Enter HTML or a binding which will be shown when "Payment Disabled" is true.
It is empty by default.

l If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myDisableReason}}.

l Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l HTML is supported.

o If you want translatable HTML, make sure the element that contains the text has the "translate"
attribute added. This will be picked when the POT file is generated and be available for trans-
lation.

o A string with no HTML does not need a "translate" attribute as it will be embedded in a div with
the attribute.

Use case

A form accepts credit card payments only if the user resides in the United States. The Payment
Disabled value is set to (vm.models.studentEntity.CountryId !=7), where CountryId = 7 is United
States, and the Payment Disabled Reason is set to <h4 style="color:red;">**Make Payment Dis-
abled - Cannot accept foreign credit cards.
 Contact your administrator for alternate pay-
ment options.</h4>

The workflow for the sequence has a LookupReferenceItem activity with Reference Item Type-
e=Country and ReferenceItem Id="studentEntity.CountryId.Value. If the user's stu-
dentEntity.CountryId.Value is not 7, the credit card payment option is disabled, and the
following text is displayed above the "Make Payment" button:

**Make Payment Disabled - Cannot accept foreign credit cards.
Contact your administrator for alternate payment options.

l Payment Email is optional. Enter binding corresponding to the card holder email address. Example: {{vm.-

models.myEntity.email}}. This property must be a binding if set.

l Payment Error Message is optional. Enter the error message that is displayed if the user clicks Next

Forms Builder Version 3.6.1 123 Help Guide

without paying or when an error occurs while receiving the data from the card processor. Example: Payment
could not be processed. Please contact customer service.

l Payment Firstname is required. Enter the binding corresponding to the card holder first name. Example:
{{vm.models.studentEntity.cardHolderFirstName}}. This property must be bound and does not
take a string.

l Payment Instructions are optional. Enter the payment instructions to be displayed in the Credit Card Pay-
ment component above the Payment Link. For example: Please make a payment by clicking on the link below
and proceeding to the payment site. After completing the payment, click the Return toMerchant Website link.

Note: You can specify a variable in the payment instructions using the syntax {{vm.models.amount}}.
This will display the exact amount to be paid. For example: Please make a payment for ${{vm.-
models.amount}} by clicking on the link below and proceeding to the payment site. Click on the Return toMer-
chant Website link after completing the payment.

l Payment Lastname is required. Enter the binding corresponding to the card holder last name. Example:
{{vm.models.studentEntity.LastName}}. This property must be bound and does not take a string

l Payment Link Class is optional. Enter the CSS class (or space separated classes) for the payment link URL. It
must be defined in a Renderer CSS file. Default: btn btn-primary

The class btn btn-primary is a Bootstrap class that renders the Payment Link as a blue button with white
text.

You can customize the Payment Link Class by selecting a different Bootstrap class or adding your own class in
a custom CSS.

l Payment Link Text is required. Enter the display text for the link to the payment site. Example: Make Pay-
ment. The default Payment Link Text is the label on the button.

l Payment State is optional. Enter the binding for state corresponding to the card holder address. Example:
{{vm.models.myState}}. This property must be a binding if set. See Notes.

l Payment Warning is optional. Enter a warning message that will be displayed in the Credit Card Payment
component above the Payment Link.

Forms Builder Version 3.6.1 124 Help Guide

Default: WARNING: To ensure correct processing, you must click on the Return ToMerchant Website link after
making the payment on the external Payment Processor page.

If the user does not click on a link shown on the payment processor site to return back to the Forms Builder
site, Forms Builder will have no record of the payment. Hence, the Payment Warningmessage has tomake
this clear. If a user does not click on the return link and accidentally closes the window, the payment can only
bemanually verified through Reports on the payment processor's website.

l Payment Zip is required or optional depending on how the payment flow provider is configured. If provided,
it must be a binding. Example: {{vm.models.myZip}}.

Forms Builder Version 3.6.1 125 Help Guide

Payment Processing with PayPal

Note: This help topic contains several links to the paypal.com website. The links may change without notice. If a link
is broken, please search the PayPal documentation or contact PayPal for the latest information.

Create a Payflow Pro Account

Set up an account (in test or live mode) at https://manager.paypal.com/.

1. Click the link to set up anew account.

2. On the next page, click Get Started Today.

3. Select the PayFlow Pro option. The Create Payflow Gateway Account page is displayed.

https://manager.paypal.com/

Forms Builder Version 3.6.1 126 Help Guide

4. Select the option I do not have a Processor. Setup test account and follow the instructions.

If you already have a PayFlow Pro account, ensure that Hosted Checkout Pages is enabled when you log in to
https://manager.paypal.com/.

Forms Builder Version 3.6.1 127 Help Guide

Contact a PayPal representative if you have any issues with doing this.

Set Fraud Protections Filters for Your Account

When you create a test account, all the fraud filters are turned on by default. When the account is used in Forms
Builder, transactions will fail with the following message when users try to enter their card information on the PayPal
checkout page:

This is because the Total Purchase Price ceiling and Total Item Ceiling filters are enabled, but the amount is not set.
The filters kick in and the transactions will need to be reviewed and manually approved. To fix this for future trans-
actions, perform the following steps:

1. Go to your PayPal test account and navigate to Service Settings > Fraud Protection > Test Setup. The
Edit Standard Filters page is displayed.

Forms Builder Version 3.6.1 128 Help Guide

2. Enter some $ values in the Total Purchase Price Ceiling and Total Item Ceiling filters and click Deploy.

Populate Forms Builder Settings

In the Forms Builder Settings workspace, populate the HostedPageUrl, Partner, Password, PaymentUrl, User, and

Forms Builder Version 3.6.1 129 Help Guide

Vendor fields.

Provide the Password,User, and Vendor values. The remaining fields are preset. If you change the credit card pay-
ment provider at a later time, you must update the URLs, remove the Partner entry, and update the Password, User,
and Vendor. The values specified in the Settings workspace are saved to the web.config file for Form Designer.

Name Value

HostedPageUrl URL that identifies the location of the payment processor's page: https://pilot-pay-
flowlink.paypal.com

The prefix pilot- indicates that this URL should be used during testing. When youmove to a
live environment, remove "pilot-" from the URL. Make sure to use the right type of Payflow
account (test/live) in your environments (test/live). Do not use a live account in the test envir-
onment and vice versa. The URLs should be with/without "pilot-" as appropriate.

Partner Partner for your PayPal Manager account. It is the same field you use when you log in to https://-
manager.paypal.com/.

Password Specify the Password (case sensitive) used to log in to https://manager.paypal.com/.

PaymentUrl URL that identifies the payment page in live or test mode:
o Test mode: https://pilot-payflowpro.paypal.com
o Live mode: https://payflowpro.paypal.com

Provider Name of the credit card payment provider: PayPal.

Forms Builder Version 3.6.1 130 Help Guide

Name Value

User Specify the User (case sensitive) used to log in to https://manager.paypal.com/. It can be the same
as the Vendor.

The User is optional, but PayPal highly recommends using it. Create a User against which API calls
can bemade. Create a User from the Account Administration > Manage Users > Add User page.
Refer to PayPal Manager documentation for more information.

Vendor Specify the Vendor (case sensitive) used to log in to https://manager.paypal.com/.

Configure the Hosted Payment Page

The fields displayed on the hosted payment page are configurable. To configure the fields, perform the following
steps:

1. Log in to your account at https://manager.paypal.com/.

2. On the Home page, click theHosted Checkout Pages link.

3. On the Server Settings page, click Setup.

https://manager.paypal.com/

Forms Builder Version 3.6.1 131 Help Guide

4. On the Service Settings page > Set Up tab, select the billing information settings that are appropriate for your
institution. Specify which fields are required or optional, which fields are editable, and so on. Refer to the
PayPal Manager documentation for more details about these settings.

In the Payment Information section of the Set Up tab, specify the text for the Return URL link and ensure
that the Return URL Method is set to POST (default: GET). Without this setting, the payment process with
the Credit Card Payment component and VerifyCardPayment activity will not work.

5. In the Security Options section, select Yes to Enable Secure Token.

Forms Builder Version 3.6.1 132 Help Guide

6. On the Service Settings > Customize tab, select either Layout A or Layout B for the hosted payment page.
Example: Layout A

Forms Builder Version 3.6.1 133 Help Guide

Note: Layout C cannot be used with Forms Builder sequences because it does not provide a Return URL link
to return to the Forms Builder site after the payment is made.

Forms Builder Version 3.6.1 134 Help Guide

Refer to the PayPal Manager documentation for more details: https://developer-
.paypal.com/docs/classic/payflow/gs_ppa_hosted_pages/.

7. On the Account Administration > Account Preferences tab, select the Time Zone of the Forms Builder server.
The VerifyCardPayment activity uses the time stamp returned by the PayPal server and compares it to the cur-
rent time stamps in the workflow. If the time stamps don't match, the activity returns a negative result and
the payment transaction is not verified.

Card Numbers for Testing

To test your form, refer to the following website to obtain credit card numbers for testing:

https://developer.paypal.com/docs/classic/payflow/integration-guide/?mark=test%20card%20numbers#credit-
card-numbers-for-testing

https://developer.paypal.com/docs/classic/payflow/gs_ppa_hosted_pages/
https://developer.paypal.com/docs/classic/payflow/gs_ppa_hosted_pages/
https://developer.paypal.com/docs/classic/payflow/integration-guide?mark=test%20card%20numbers#credit-card-numbers-for-testing
https://developer.paypal.com/docs/classic/payflow/integration-guide?mark=test%20card%20numbers#credit-card-numbers-for-testing

Forms Builder Version 3.6.1 135 Help Guide

Payment Processing with ACI

The Forms Builder settings below are required to use ACI as the vendor for credit card payment processing. For addi-
tional setup requirements, please contact your Campus Management Corp. account representative.

Note: Campus Management Corp. products support only the “Funding Portal” product from ACI.

Populate Forms Builder Settings

In the Forms Builder Settings workspace, populate the Payment setting fields.

Provide the Password,User, and Vendor values. The remaining fields are preset. If you change the credit card pay-
ment provider at a later time, you must update the URLs, remove the Partner entry, and update the Password, User,
and Vendor. The values specified in the Settings workspace are saved to the web.config file for Form Designer.

Name Value

HostedPageUrl URL that identifies the location of the payment processor's page:
https://collectpay-uat.princetonecom.com/fundingPortal/addFunding.do

Partner Partner for your ACI Manager account.

Password Specify the Password (case sensitive) used to log in to your ACI account.

PaymentUrl Url that identifies the payment page:
https://collectpay-uat.princetonecom.com/fundingPortal/makePayment.do

Provider Name of the credit card payment provider: ACI.

User Specify the User (case sensitive) used to log in to your ACI account. It can be the same as the
Vendor.

Vendor Specify the Vendor (case sensitive) used to log in to your ACI account.

Forms Builder Version 3.6.1 136 Help Guide

Configure the Hosted Payment Page

The default ACI payment page can be customized as needed. Please contact ACI (www.aciworldwide.com) to request
changes to the payment page.

Note About the Functionality of ACI Payment Forms

The user information (e.g., name and address) is not carried forward to the ACI payment site. Users will have to re-
enter this data on the payment site.

Debug Information

Credit card payments using ACI generate a random 6-digit Correlation Id for each Transaction Id. The Transaction Id
and Correlation Id are written to the Forms Builder Renderer log when using debug mode, for example:

2018-11-26 13:54:56.4739 61 Debug Cmc.Nexus.FormsBuilder.EventHandlers.PaymentEventHandlers veri-
fyPaymentRequest:
{
"PaymentProviderInfo": {
"Partner": "",
"MerchantCode": "......",
"UserName": "..........",
"Password": "..........",
"PaymentGatewayUrl": "https://collectpay-uat.princetonecom.com/fundingPortal/makePayment.do",
"HostedPageUrl": "https://collectpay-uat.princetonecom.com/fundingPortal/addFunding.do "

},
"TransactionId": "9786473",
"CorrelationId": "750009"

}

http://www.aciworldwide.com/

Forms Builder Version 3.6.1 137 Help Guide

Payment Processing with IATS

The Forms Builder settings below are required to use IATS as a vendor for credit card payment processing. For addi-
tional setup requirements, please contact your Campus Management Corp. account representative.

Populate Forms Builder Settings

In the Forms Builder Settings workspace, populate the Payment setting fields.

Provide the Password,User, and Vendor values. The remaining fields are preset. If you change the credit card pay-
ment provider at a later time, you must update the URLs, remove the Partner entry, and update the Password, User,
and Vendor. The values specified in the Settings workspace are saved to the web.config file for Form Designer.

Name Value

HostedPageUrl URL that identifies the location of the payment processor's page:
https://www.iatspayments.com/Portal/StaticPages/IatsHostedAuraTemplate

Partner Partner for your IATS account.

Password Specify the Password (case sensitive) used to log in to your IATS account.

PaymentUrl Url that identifies the payment page:

Provider Name of the credit card payment provider: Iats.

User Specify the User (case sensitive) used to log in to your IATS account. It can be the same as the
Vendor.

Vendor Specify the Vendor (case sensitive) used to log in to your IATS account.

Forms Builder Version 3.6.1 138 Help Guide

Configure the Hosted Payment Page

The default IATS payment page can be customized as needed. To do so, log in to the IATS Customer Portal at
https://www.iatspayments.com and navigate to Aurora Form Setup.

https://www.iatspayments.com/

Forms Builder Version 3.6.1 139 Help Guide

Date Picker

You can use the Date Picker component to quickly select a date and prevent the entry of an invalid date.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 140 Help Guide

Workflow Argument

For workflow arguments used with the Date Picker in Forms Builder 3.5 and later, see Default Argument Types for
Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disable Input Text disallows typing in the field. When true, dates must be selected from the date picker
popup.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

 Do not specify theDisable Input Text property if tabbing through each item in a rendered form using only
the keyboard (i.e., not using mouse) is required.

l Disabled sets a control to disabled.

Forms Builder Version 3.6.1 141 Help Guide

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Format property settings depend on the control type used:

l Date Picker:

Specifies the format of the date and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: yyyy-MM-dd, MM-dd-yy (case sensitive: d for day of month, M for month, y for year)

l Time Picker:

Specifies the format of the time and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: HH:mm, hh:mm:ss tt (case sensitive: H or h for hour, m for minute, s for second)

See Kendo UI documentation for more information.

l Date Time Picker:

Combines the two above with both date and time.

l Numeric Textbox:

Specifies format of the numeric value. e.g., n2 - 2 decimal places, c - currency with cents

The date parsing and formats for these controls changed in Forms Builder 3.5. If you used date formats that
are no longer supported, you need to update and re-save the affected forms.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

https://docs.telerik.com/kendo-ui/framework/globalization/dateformatting
https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 142 Help Guide

l Ignore Time is an optional property that can be set to true or false (all lowercase). The default is false for
backward compatibility, but we strongly recommend that you set it to true when you use this con-
trol.

When set to true and a date is entered, the control will set a date only with no time. This prevents the server
from changing the date when it is located in a different time zone than the browser. This date will pair with a
DateTime or DateTimeOffset type argument in the workflow and set the date and the time as midnight no
matter what time zone the Renderer server is in. Some entities use a Date object which does not have a time
so this would not be required for them.

If a DatePicker control is going to be used as a minimum or maximum date dynamically by another control,
IgnoreTime must be set true to avoid conversion errors in the browser developer tools (F12).

The Ignore Time property is not dynamically bindable (cannot take an expression). Once set in a form, it can-
not be changed.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Maximum Value specifies a maximum date value.

o To provide forward compatibility, the date string should be in ISO 8501 format, e.g., 2017-09-03
(which is a universal non-ambiguous format).

o If bound, it starts with {{vm.models. and ends with }}.

l Minimum Value specifies a minimum date value.

o To provide forward compatibility, the date string should be in ISO 8501 format, e.g., 2017-09-03
(which is a universal non-ambiguous format).

o If bound, it starts with {{vm.models. and ends with }}.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

Forms Builder Version 3.6.1 143 Help Guide

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

Forms Builder Version 3.6.1 144 Help Guide

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

When binding controls, String and Integer properties such as Tooltip and MinValue require the Model value to be
enclosed in double curly braces, for example, {{vm.models.myTooltip}} for Tooltip or {{vm.-
models.myMinValue}} for a Text Box of type Number. Boolean properties do not need the curly braces, for
example, vm.models.myRequired.

This control has the capability to output an ISO 8601 String value which is converted to a DateTime or DateTimeOff-
set object (depending on the type of the workflow argument). For more information, see Date & Time Values and
Offsets.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder 3.x 145 Installation Verification Procedure

Date Time Picker

You can use the Date Time Picker component to quickly select a date and time. This component helps prevent the
entry of an invalid date and time.

Control Property Settings

Note: Specify the maximum date and time and minimum date and time
to validate a value range.

Rendered Component

Forms Builder 3.x 146 Installation Verification Procedure

Workflow Argument

The argument type must be System.Nullable<System.DateTime if you intend to store a value to the database. Do not
use an argument type of String.

When vm.models.myDate is “2018-02-22T09:00:00” (which is the DateTime object serialized for that date and
time), it is treated as a local time in the component. No matter what time zone the component is in.

If the value is used only for display and print purposes, you may use an argument type of Sys-
tem.Nullable<System.DateTimeOffset. This represents a date and time value together with an offset that indicates
how much that value differs from UTC.

When vm.models.myDate is “2018-02-22T09:00:00Z” or “2018-02-22T09:00:00-08:00”, it will be different depend-
ing on which time zone the component is in.

For workflow arguments used with the Date Time Picker in Forms Builder 3.5 and later, see Default Argument Types
for Components.

Properties

Forms Builder 3.x 147 Installation Verification Procedure

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disable Input Text disallows typing in the field. When true, dates and times must be selected from the date
time picker popups.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

If Input Text is allowed, the date and time value entry must be complete including AM/PM (e.g., 02/01/2018
4:00 PM), otherwise the date and time value on the rendered form will be an empty string.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Format property settings depend on the control type used:

l Date Picker:

Specifies the format of the date and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: yyyy-MM-dd, MM-dd-yy (case sensitive: d for day of month, M for month, y for year)

l Time Picker:

Specifies the format of the time and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: HH:mm, hh:mm:ss tt (case sensitive: H or h for hour, m for minute, s for second)

See Kendo UI documentation for more information.

l Date Time Picker:

https://docs.telerik.com/kendo-ui/framework/globalization/dateformatting

Forms Builder 3.x 148 Installation Verification Procedure

Combines the two above with both date and time.

l Numeric Textbox:

Specifies format of the numeric value. e.g., n2 - 2 decimal places, c - currency with cents

The date parsing and formats for these controls changed in Forms Builder 3.5. If you used date formats that
are no longer supported, you need to update and re-save the affected forms.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Interval for the time picker. The default is 30 minutes.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myInterval}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Maximum Value specifies a maximum date AND time value.

o To provide forward compatibility, the date string should be in ISO 8501 format., e.g., 2017-09-03
(which is a universal non-ambiguous format).

o If bound, it starts with {{vm.models. and ends with }}.

l Minimum Value specifies a minimum date AND time value.

o To provide forward compatibility, the date string should be in ISO 8501 format., e.g., 2017-09-03
(which is a universal non-ambiguous format).

o If bound, it starts with {{vm.models. and ends with }}.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.".

o The argument type must be Nullable.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder 3.x 149 Installation Verification Procedure

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow must match the "vm.models." suffix casing.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page

Forms Builder 3.x 150 Installation Verification Procedure

followed by any higher numbered tab indices, followed by any other keyboard focusable elements
such as buttons. required fields, and CAPTCHA. The tab index value should not match another con-
trol's tab index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

When binding controls, String and Integer properties such as Tooltip and MinValue require the Model value to be
enclosed in double curly braces, for example, {{vm.models.myTooltip}} for Tooltip or {{vm.-
models.myMinValue}} for a Text Box of type Number. Boolean properties do not need the curly braces, for
example, vm.models.myRequired.

This control has the capability to output an ISO 8601 String value which is converted to a DateTime or DateTimeOff-
set object (depending on the type of the workflow argument). For more information, see Date & Time Values and
Offsets.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 151 Help Guide

DocuSign

You can use the DocuSign component to integrate DocuSign fields into a form. Forms Builder supports a several
types of DocuSign fields, e.g., Approve, Decline, Sign, Initial, and others. The fields are selected in the Type property
of the Control Property Settings.

Before using the DocuSign component, you must set up and account with DocuSign and configure the DocuSign Set-
tings in Forms Builder.

Control Property Settings

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

When you design a form with hidden fields or form sections, you may need to hide the empty space for
DocuSign components to ensure that the form is rendered as intended. To hide the space for DocuSign com-
ponents:

1. Place the DocuSign components in their own form section (usually at the bottom of a form).

2. In the Form Section Property Settings, specify the Class namehideDocuSignWhiteSpaceInFormSec-
tion.

3. Save the form. Forms Builder will not render the form section on the screen but will allow it to render
when it is printed to a PDF.

l Signer provides the following options:

o Self - Signer 1
o Signer 2
o Signer 3
o Signer 4
o Signer 5

Forms Builder Version 3.6.1 152 Help Guide

l Type provides the following DocuSign fields:

Field Description
Required/
Optional

User
Input

Approve Allows the recipient to approve documents without placing a signature
or initials on the document.

Required Yes

Attachment Allows the recipient to attach supporting documents to an envelope. Required Yes

Checkbox Allows the recipient to select a yes/no (on/off) option. Optional Yes

Company Allows the recipient to specify the company name. Required Yes

Date Allows the recipient to enter a date. Required Yes

Date Signed Allows the recipient to specify the date the document was signed. Required Yes

Decline Allows the recipient the option of declining an envelope. Optional Yes

Email Allows the recipient to enter an email address. Required Yes

Email Address Allows the recipient to specify an email address. Required Yes

Envelope Id Displays (read-only) the envelope ID. The Envelope object is the overall
container for a transaction. The envelope contains the documents for
the eSignature transaction. It also contains information about the recip-
ients and timestamps that indicate delivery progress.

Required No

Full Name Allows the recipient to specify his/her full name. Required Yes

Initial Allows the recipient to initial the document. Required Yes

Number Allows the recipient to enter numbers and decimal (.) points. Required Yes

Signature Allows the recipient to sign a document. May be optional. Required Yes

Ssn Allows the recipient to enter a Social Security Number. Required Yes

Text Allows the recipient to enter any type of text. Required Yes

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Working with the DocuSign Component

You are designing a form in which you want the person completing the form to sign and date the form electronically.

Forms Builder Version 3.6.1 153 Help Guide

1. Drag two DocuSign components into the Layout pane of your form in Form Designer.

2. On the first DocuSign component, set the Signer to Self - Signer 1 and set the Type to Signature.

3. On the second DocuSign component, set the Signer to Self - Signer 1 and set the Type to Date Signed.

When CampusNexus Student fields are inserted into a form, the student is automatically directed to the section that
needs an e-signature.

Forms Builder Version 3.6.1 154 Help Guide

If the fields are not inserted into a form but e-signature is enabled, the student is directed to electronically sign the
document and can drag out the signature anywhere on the document.

Forms Builder Version 3.6.1 155 Help Guide

In Forms Builder 3.6 and later, the DocuSign component allows for a DocuSign sequence to be embedded in an
IFrame. Previously, users received a "Waiting for data" message after successfully completing an embedded
DocuSign sequence. Now, users will be redirected to the parent sequence with a "DocuSign complete" form and/or
confirmation form.

The DocuSign component provides an automatic transition (auto-redirect) from the Default-Frame form to the con-
firmation form after a successful DocuSign session. The auto-redirect obsoletes the "DocuSign Confirmation Mes-
sage Text" setting.

The auto-redirect depends on a forward direction in the WaitForFormBookmark activity in the transition after the
DocuSign redirect state (typically Default-Frame), in particular if DisplayName has been modified.

l If there is only a single button and DisplayName has been customized but Transition Type was left as
"Default", the auto-redirect moves forward to next form state.

l If there are two buttons and DisplayName(s) have been customized but Transition Type was left as "Default",
the auto-redirect will assume the rightmost button (alphabetically last) is the transition for next state.

Best Practice is always to specify Display Order and Transition Type (“MoveForward” or “MoveBack”) when button
Display Name(s) have been customized so behavior is known. The Transition Type of “Default” was kept for com-

Forms Builder Version 3.6.1 156 Help Guide

patibility for forms built prior to Transition Type being available on WaitForFormBookmark with default Display
Names "Next" and "Back”.

Localization of DocuSign Sequences

To localize sequences with DocuSign components, follow the procedure described here: Steps to Localize
Sequences. There are no additional steps to be completed for DocuSign sequences. DocuSign does not provide a
method for Forms Builder to pass in a locale.

The DocuSign portion of the sequences (Start, Sign here, Finish, and Completed email) displays drop-down control
with a limited list of locales that are supported by DocuSign. In single signer sequences, the language selection con-
trol is in the IFrame of the sequence. In multiple signer sequences, the language control is on the DocuSign site.

The language selection for the DocuSign portion of the sequences is cached in the user's browser. In multiple signer
sequences, the primary signer and other signers need to set the languages themselves. For example, one secondary
signer may select French, while another secondary signer may select Italian. However, the PDF translation within the
form itself is based on primary signer’s locale selection on the form prior to the redirection to the DocuSign site for
the secondary signers.

Allow Sequential Signing

Forms Builder 3.6 and later supports RoutingOrder as an optional property on the DocuSignRecipient entity. If your
DocuSign form sequences use this property, ensure that you have permissions to create a routing order.

1. Log in to you account at https://admin.docusign.com.

2. Go to DocuSign Admin. and navigate to Permission Sets > Action: Edit > User Permissions.

3. Select Allow sequential signing.

4. Save your changes.

If the RoutingOrder is not explicitly specified in the workflow, the RoutingOrder will be initialized with SignerId in the
activity (Signer 1 gets 1, Signer 2 gets 2, etc.). When the first recipient has a routing order of 1 and the second recip-
ient has a routing order of 2, the second recipient will not receive the request until the first signer has finished sign-
ing.

If the third and fourth recipients have a routing order of 3, they will simultaneously receive a copy of the completed
envelope once the second signer completes their actions.

For more information, see Get the DocuSign Configuration and Pass the Recipient Information in Workflow Sample -
Multiple Signers.

https://admin.docusign.com/

Forms Builder Version 3.6.1 157 Help Guide

Drop-down List

You can use the Drop-down List component to select a single value from a list of values.

Forms Builder supports the following types of drop-down controls:

l Default drop-down controls for fields in the CampusNexus entity model. Built-in Lookup Queries retrieve
the list values for default drop-down controls. See example below.

l Custom drop-down controls with aValue List defined using the Edit button on the Value List property. See
Drop-down List with Value List.

l Custom drop-down controls with aWorkflow Initialized List defined using the Edit button on the Value
List property.

o Drop-down List with Workflow Initialized List
o Drop-down List with Workflow Initialized List via ExecuteQuery
o Drop-down List with Workflow Initialized List and Template

The example shows a default drop-down list control for the Campus field.

Control Property Settings

Forms Builder Version 3.6.1 158 Help Guide

Rendered Component

Forms Builder Version 3.6.1 159 Help Guide

Workflow Argument

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Filter Type defines how search values will be filtered. Select from the following filter types: contains (default),
endswith, and startswith. Values typed using the keyboard will be used to filter the list according to the selec-
tion.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 160 Help Guide

spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Lookup Display Member is the name of the property in the OData query string to use for the display.

For example, if the query string for a list of Campuses contains the Code, Name, and ID fields, the Lookup Dis-
play Member value can be set to Code, Name, or ID.

l Lookup Query is the OData query string to retrieve values for the control.

The following is an example of an OData query string that retrieves the Code, Name, and ID values from the
Campus table, where isActive equals true and the returned values are sorted by Name.

Campuses?$select=Code, Name, Id&$filter=IsActive eq true&$orderby=Name

Lookup Query is not used if a custom Value List is specified. See Drop-down List with Value List.

l Lookup Sort Member is the name of a property in a Lookup query string to sort on. By default, the Lookup
query sort order is used.

l Lookup Translation Members is a comma separated list of property names in an OData query string to be
translated. You should always validate the query will work in a browser. Only basic errors can be detected in
Form Designer.

l Lookup Value Member is the name of the property in the OData query string to use as the value.

o If the Lookup Value Member is an Id, the associated data type in Workflow Composer is Int32.

o If the Lookup Value Member is a Code or Name, the associated data type in Workflow Composer is
String.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier

Forms Builder Version 3.6.1 161 Help Guide

string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

Note: When the Drop-down List is used to retrieve integer values and the field is optional (can be empty or
null), this must be accounted for when defining the variable for the model binding in the workflow. Instead of
defining the variable as an Int32, it must be defined as Nullable<Int32>. To do so: In the "Browse and
Select a .Net Type" window, browse to Type System.Nullable<T> and select Int32 in the System.Nullable
field.

l Option Label is the label in a drop-down list when no list value is selected. The default value is <Select>.

Note: In forms created prior to Forms Builder 3.3, the default Option Label is rendered blank. Re-save these
forms in Forms Builder 3.3 to render the default Option Label as <Select>.

l Page Size is the size of the page when paging for returned values is true. The default value is 100. Example: If
Page Size is set to 10 and the number of returned values exceeds 10, paging occurs.

l Product indicates the product from which OData query results are returned. Specify one of the following val-
ues:

o Student
o CRM
o Occupation Insight

The specified product must be configured in the <products> section of the Renderer web.config file.

Forms Builder Version 3.6.1 162 Help Guide

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Specify "Occupation Insight" in the Product property if the source of the query will come from a different
data source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Server Filtering turns on server filtering. An input box is provided for text, and values containing the typed

Forms Builder Version 3.6.1 163 Help Guide

text will be displayed up to the page size. This property is not bindable.

Impact of Server Filtering on large drop-down lists:

o If Server Filtering is set to false, all list items will be displayed in the drop-down list as specified by the
page size value.

o If Server Filtering is set to true, only the first list items will be displayed in the drop-down list. Any list
items in positions higher than the page size value will not be visible. The user must enter search text to
find matching list items. The server filter returns any occurrence of the search text in the list items.

If Server Filtering is set to true, we suggest using the Tooltip property on the Drop-down List com-
ponent to instruct the user to enter search text to view all matching list values.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Template is optional. You can use this property to define a custom template to format data in a rendered
drop-down list. For an example, see Drop-down List with Workflow Initialized List and Template.

For information on how to use the Kendo embedded JavaScript to write a conditional template, see https://-
docs.telerik.com/kendo-ui/framework/templates/overview.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/
https://docs.telerik.com/kendo-ui/framework/templates/overview
https://docs.telerik.com/kendo-ui/framework/templates/overview

Forms Builder Version 3.6.1 164 Help Guide

l Value List is optional. Click the Edit button to specify the source of the values to be displayed in the Drop-
down List.

For examples of custom drop-down controls with Value Lists, see Drop-down List with Value List and Drop-
down List with Workflow Initialized List.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Lookup Queries for CampusNexus CRM Metadata

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

Forms Builder Version 3.6.1 165 Help Guide

Drop-down List with Value List

You can use the Drop-down List component to create a custom list of values for a drop-down control. In our
example, the custom list contains values describing the frequency at which something occurs.

The Model property needs to define the Model binding for the selected value (e.g., vm.-
models.myFrequencySelection), and the argument type in the workflow needs to be set properly based on the list
values (e.g., String). The selection itself (in Control Property Settings) will NOT be of type SerializableDynamicObject
[].

Note: A custom value list applies only to a specific component and cannot be reused for multiple drop-down com-
ponents on same page. For example, if "Frequency" is a drop-down for multiple sections on same page, each drop-
down must define the value list with unique bindings.

This topic describes only the Value List property of the Drop-down List component. Refer to the Drop-down List
topic for property settings other than Value List.

Control Property Settings

Forms Builder Version 3.6.1 166 Help Guide

Rendered Component

Forms Builder Version 3.6.1 167 Help Guide

Workflow Arguments

Use a workflow argument of type String to capture the selections on the form.

Create a matching argument of type SerializableDynamicObject[] to make the Value List available in a workflow.

For workflow arguments used with the Drop-down List with Value List in Forms Builder 3.5 and later, see Default
Argument Types for Components.

Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in the
drop-down list.

Forms Builder Version 3.6.1 168 Help Guide

o In theModel For Value List field, specify the Model property to which the drop-down list will be bound. The
value must start with "vm.models.".

o Select Value List to create a custom list. Use the Model property to bind the Value List. The Value List over-
rides an OData Lookup Query.

The Value List is available in a workflow if a matching argument of type SerializableDynamicObject[] is created.

To create the list, type each value in the input field and drag it to the list area. Click in the list area to delete
a value.

o In the Text Member field, specify the value that will be used as the DataTextField. This is a required field. In a
custom Value List, the Text Member value can be any string, e.g., Name.

Click Save to save the data source settings for the drop-down list values.

Forms Builder Version 3.6.1 169 Help Guide

Drop-down List with Workflow Initialized List

You can use the Drop-down List component to create a Workflow Initialized List of values for a drop-down control.
Our example contains a list of task types retrieved from the database using a workflow.

This topic describes only theValue List property of the drop-down control. Refer to the Drop-down List topic for
the remaining properties.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 170 Help Guide

Workflow Arguments

Use an argument of type String to capture the selections on the form.
Use another argument to capture the values of the entity Lookup activity.

For workflow arguments used with the Drop-down List with Workflow Initialized List in Forms Builder 3.5 and later,
see Default Argument Types for Components.

Workflow Activity

Use a Lookup activity to initialize the drop-down list. The out-argument of the activity holds the entity values. The
Lookup activity must be placed on a form that precedes the form with the Drop-down list component.

Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in the
drop-down list.

Forms Builder Version 3.6.1 171 Help Guide

o In theModel For List field, specify the Model property to which the drop-down list will be bound. The Model
For List is required for a Workflow Initialized List. The value must start with "vm.models.".

o Select Workflow Initialized List to bind the values in the list to a Model property value. With this option,
the drop-down list values are set in the workflow. The Workflow Initialized List overrides an OData Lookup
Query.

An easy way to create a Workflow Initialized List is to use one of the Lookup activities (LookupStudentTasks,
LookupStudentAdvisors, etc.) in Workflow Composer.

Note: When you are creating a Workflow Initialized List, the simplest object to use is a NameIdObject. With an
array of these, the Text Member will be Name and the Value Member will be Id, and they will be of type string
and integer respectively. If you don’t need the Id, it is optional to set it.

In the workflow, create a variable (myList in this case). DO NOT use an argument or this will not work.

The type will be NameIdObject[] (array of NameIdObject). You can initialize the object with assign statements,
but since variables allow a Default value, use the following example.

In this example we want to create a list of 2 elements, where Yes is value 1 and No is value 2. Set Default to:

new NameIdObject(1){new NameIdObject With { .Name="Yes", .Id=1}, new NameIdObject With { .Name-
e="No", .Id=2}}

Note some significant syntax here: the 1 for the array size is VB syntax for an array of 2 elements, with index
0 and 1. There is a dot before each property name in the With sections.

If you were doing this in assign statements, you could break the statements down as follows:

myList = new NameIdObject(1){} - creates a 2-element array that is empty.

myList(0) = new NameIdObject - initialize the first array element with a new object, “With” could have been
used here instead of the following two assigns.

myList(0).Name = “Yes”

Forms Builder Version 3.6.1 172 Help Guide

myList(0).Id = 1

etc.

As you can see, the Default initialization above, while looking more complex, is less wieldy than a few assign
statements in the workflow.

To use this, you must expose this as an Out argument of type NameIdObject[]. After you create this argu-
ment, you do this with a final assign statement.

myArgList = myList

The result is that all drop-down list controls that have vm.models.myArgList as the Model For Value List bind-
ing (in the popup), will have a Yes/No list. Their Text Member must be Name, and if you use the Value Mem-
ber, it must be Id.

Note: If any of the following is true, then a SerializableDynamicObject can be used in the same way. It has
none of the following limitations.

a. You need more than two properties
b. The property names cannot be Name and Id
c. The types of the property names cannot be string and int respectively.

However, the initialization for the SerializableDynamicObject is considerably more complex to understand to
do the same thing as above (with only 2 elements). Here it is:

new SerializableDynamicObject(1){new SerializableDynamicObject With { .DataDictionary = new Dictionary
(Of String, Object) From { { "Name", "Yes"}, { "Id", 1} } }, new SerializableDynamicObject With { .DataDictionary
= new Dictionary (Of String, Object) From { { "Name", "No"}, { "Id", 2} } } }

You must do this with a variable, and then you must assign it to an argument which is bound to the control.

o In the Text Member field, specify the value that will be used as the DataTextField. This is a required field. In a
Workflow Initialized List, the Text Member value must match a property in the workflow object collection
used to populate it, e.g., Id.

o In theValue Member Field, specify the value returned when item is selected in the dropdown. It may be the
same as Text Member.

Click Save to save the data source settings for the list values.

Forms Builder Version 3.6.1 173 Help Guide

Drop-down List with Workflow Initialized List via ExecuteQuery

You can use the Drop-down List component to create a Workflow Initialized List of values for a drop-down control.
The workflow activity ExecuteQuery enables you to retrieve data from any database for display in a drop-down con-
trol.

Our example contains a list of documents retrieved from a CampusNexus Student database using an ExecuteQuery
activity followed by a ForEach<> activity, Assign activities, and an AddToCollection<> activity. Details of the attrib-
utes used with each activity are provided below.

Refer to the Drop-down List topic for details about the properties of the Drop-down List control.

Control Property Settings

Forms Builder Version 3.6.1 174 Help Guide

Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in the
drop-down list.

Forms Builder Version 3.6.1 175 Help Guide

Rendered Component

Workflow Arguments

Use an argument of type Int32 to capture the selections on the form.
Use another argument to capture the full list of selections from the ExecuteQuery.

Workflow Variables

Forms Builder Version 3.6.1 176 Help Guide

Workflow Activities

Use an ExecuteQuery activity to initialize the drop-down list. The activity must be placed on a form that precedes
the form with the Drop-down List component.

The activity executes the following command:

"select cmdocumentid,originalFileName from cmdocument where systudentid = 51850 order by datelstmod desc"

Note that the systudentid value is hard-coded. Specify an appropriate value/variable for your environment.

The connection string name does not need to be specified when the query is executed on the CampusNexus Stu-
dent database. When you query a different database, specify the connection string name.

The out-argument of the query holds the docSet variable, i.e., the data set for the drop-down list.

Place the following activities below the ExecuteQuery activity:

Forms Builder Version 3.6.1 177 Help Guide

The ForEach<DataRow> activity uses the TypeArgument System.Data.DataRow and the Values property
docSet.Tables(0).AsEnumerable

The threeAssign activities have the following attributes:

To Value

idList New NameIdObject

idList.Name item("OriginalFileName").ToString

idList.Id CINT(item("CmDocumentID"))

TheAddToCollection<NameIdObject> activity uses the following properties:

Forms Builder Version 3.6.1 178 Help Guide

Property Value

Collection idValues

Item idList

TypeArgument Cmc.Nexus.FormsBuiler.Entities.NameIdObject

The finalAssign activity assigns the document Id values to the myDocs argument.

To Value

myDocs idValues.toArray

Forms Builder Version 3.6.1 179 Help Guide

Drop-down List with Workflow Initialized List and Template

You can use the Drop-down List component to create a Workflow Initialized List of values for a drop-down control.
Our example is a drop-down list for the Campus field with formatting using the Template property.

This topic describes only the Template property of the drop-down control. Refer to the Drop-down List topic for
the remaining properties.

Control Property Settings

Forms Builder Version 3.6.1 180 Help Guide

Rendered Component

Forms Builder Version 3.6.1 181 Help Guide

Workflow Argument

Note: Use a workflow argument of type String to capture the selections on the form.

Template

Template is an optional property. You can use this property to define a custom template to format data in a drop-
down list.

In our example, we want the drop-down list for the Campus field to display both the Campus Name and Code
instead of only the Name (default).

To retrieve the Name and Code values, we use the following OData query in the Lookup Query property:

Campuses?$select=Code, Name, Id&$filter=IsActive eq true&$orderby=Name

To display both the Name and Code in the drop-down list, we use the following Template property:

#: data.Name # - ** #: data.Code #</span

Note the custom span class where the name and code values are separated by - ** (space space dash
asterisk asterisk).

Forms Builder Version 3.6.1 182 Help Guide

Expand/Collapse Panel

You can use the Expand/Collapse Panel component to add an interactive control to a form that allows the user to
expand or collapse content. You can style the control as a text link or as a plus/minus button that is center, left, or
right aligned. Custom styling is also supported. You specify the expanded/collapsed content in the HTML property.

Control Property Settings

Rendered Component

Label Type = link

Forms Builder Version 3.6.1 183 Help Guide

Label Type = plus/minus

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Expand Label is the value displayed in the label for the clickable expand.

l If this value is bound, it must be enclosed in double braces, e.g. {{vm.models.myLabel}}.

l Allowable suffix characters: starts with letter, then letters, numerals or underscore.

l TheHTML property enables you to format rendered output using a subset of standard HTML markup as a
fragment of an HTML page. That is to say, <!DOCTYPE html>, <html>, <head>, <body> and <form> tags are
not appropriate in an HTML fragment. While they may not harm the page, they do have the potential to cre-
ate silent Renderer errors or cause the page render to fail completely. The HTML validation parser will point
out errors in the HTML fragment and mark them as a warning but will not attempt to enforce rules. Warnings
should be corrected to avoid unexpected results.

An example of an HTML fragment is:

<h2 class=”myclass”>Campus View</h2>

Forms Builder Version 3.6.1 184 Help Guide

Also possible are <script> and <style> fragments. This allows a great deal of customization. A model value can
be addressed in JavaScript with “window.vmModelsRef”. If you had an argument in a workflow “myKey”,
which would also be a model value “vm.models.myKey”, then in external HTML JavaScript this can be
addressed with “window.vmModelsRef.myKey” or “window.vmModelsRef[‘myKey’]”.

Similarly, parameters for the Renderer URL that are addressed with formIn-
stance.QueryParams.DataDictionary(“myKey”) or special case formInstance.QueryParams.DataDictionary
(“addonQueryParams”) in the workflow (see Renderer URL Query Parameter), can be addressed in external
HTML JavaScript as “window.vmQueryParamsRef.myKey” or “window.vmQueryParamsRef[‘myKey’]. This
would allow you to pass information in the renderer URL to your custom JavaScript (or even to a custom Style
via a binding). Of course, depending on how it is to be used, make sure your JavaScript and/or workflow val-
idates the information passed, or this could be a security risk.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Is Expanded sets the control to be collapsed or expanded.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g. vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g. vm.models.myvalue==7 (>,<,!-
!=,==,>=,<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Note: If you want the content of the Expand/Collapse Panel component to be displayed in View Summary
and/or PDF, set the “Is Expanded” property to true.

l Label Alignment aligns the label. Select from the drop-down list. The options are center, left, and right.

l Label Type set a label type. Select from the drop-down list. The options are link and plus/minus.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 185 Help Guide

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 186 Help Guide

File Upload

You can use the File Upload component to upload files in a form.

When files are uploaded to Forms Builder, they are stored temporarily in a table named UploadStorage. To retrieve
the files and use them in a workflow, use the GetAttachments activity.

In Forms Builder 3.4 and later, users can retry uploading a file using the same File Upload component when the
webpage was reloaded, or the network connection was interrupted during the first try. In previous versions, an error
was displayed.

Enhancements in Forms Builder 3.5

In Forms Builder 3.5 and later, the code for the File Upload component was completely revised to provide new func-
tionality such as the "Required", "Required Message", and "Tab Index" properties. When you drag the File Upload
into the Layout pane, the underlying functionality will be that of the new component. Existing forms that already
include the File Upload continue to execute the previous version of the code.

For existing forms, if you want to use the “Required” property, you need to:

l Remove the File Upload component from the previously created form and then re-drag the component into
the Layout pane.

l Update the GetAttachments activity in the workflow with the new ControlIdentifier value.

Control Property Settings

Forms Builder Version 3.6.1 187 Help Guide

Rendered Component

Properties

l Allow Multiple Files allows upload of multiple files.

o If this value is bound, it must start with "vm.models."

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to

Forms Builder Version 3.6.1 188 Help Guide

the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Extensions Allowed is the list of allowed extensions for upload, in comma separated format, such as pdf,
docx, png. This must be a comma separated list of extensions (no spaces and no periods).

Note: If you use dynamic binding for the Extensions Allowed property, for example, {{vm.-
models.myFileTypes}}, then no server-side validation can be performed for potential security risks (such
as uploading an .exe file). It is therefore your responsibility to perform these checks in the workflow.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Max Size Allowed is the maximum allowable size of an uploaded file in bytes. 0 (default) means unlimited.

o If this value is bound, it must begin with {{vm.models. and end with }}.
o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

Notes:

o If this control is bound to a model, depending on the product, the Max Size allowed may be limited by
the service used to persist the attachment.

o If you use dynamic binding for the Max Size Allowed property, then no server-side validation can be
performed for potential security risks (such overloading the server with very large files causing a
"Denial of Service Attack"). It is therefore your responsibility to perform these checks in the workflow.

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 189 Help Guide

<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Select Message is the text to display in the upload button.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

Note: When Tab Indexes are specified on a form with File Upload component, after the user uploads a file,
the focus will shift to the default tabs (e.g., buttons) at the end of the form. The Shift+Tab key combination
can be used to go backwards in the tab order to fill in any other items after the file upload or any time an item
on the form is missed.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 190 Help Guide

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Forms Builder Version 3.6.1 191 Help Guide

Grid

You can use the Grid component to implement a grid or table within a rendered form. The property settings for the
Grid component allow you to define the table structure and presentation, that is, the number of columns, column
headings, data types, formatting, etc. Additional settings allow you to specify if the grid will be read-only or editable.

All contents of the grid should be bound via the Model property so that it will be displayed correctly when converted
to PDF. This applies to a PDF file saved as attachment to a document tracking record or a PDF file displayed in
DocuSign. Use the PrintUrlToPdf activity to create the PDF.

To feed a grid with data, you can use the Model, Model Data, or OData Query properties:

l The Model property can be used to populate the grid with data from CampusNexus Student or Cam-
pusNexus CRM entities.

l The Model Data property can be used to define the initial grid data as a JSON string.

l The OData query property can retrieve data from the CampusNexus CRM or CampusNexus Student data-
base. You can then configure the Grid to display specific columns and perform sorting, paging, and filtering
operations via its built-in property settings.

To handle add, edit, and delete cases, Grids should be workflow initialized.
Added rows can be determined by their Id value.
ODdata queries will not return the entityState and are limited to read-only grids.

For details about all available grid properties, see Grid Property Settings and Grid Columns Properties.

For use case examples, see:

l Grid Initialized via OData Query
l Grid Bound to an Entity
l Grid Bound to Custom Model Data (non-Entity)
l Grid Bound to Results of ExecuteODataQuery
l CRM Grid for One-to-Many Relationships

For workflow arguments used with the Grid in Forms Builder 3.5 and later, see Default Argument Types for Com-
ponents.

Forms Builder Version 3.6.1 192 Help Guide

Grid Property Settings

The Property Settings pane of the Grid component enables you to specify properties that apply to the entire grid
and properties that apply to specific columns within the grid (see Grid Columns Properties).

The image below shows the default properties displayed when the Grid component is first added to a form. Note
that the Model, Model Data, and OData Query properties are not prepopulated. Depending on the data source for
the grid and depending on whether the grid data need to be bound, you must specify either Model, Model Data, or
OData Query, or a combination of these properties.

Control Property Settings

Properties

l Add Message is the text used to instruct the user to add a new record to the grid on the form.

o If this value is bound, it must begin with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to

Forms Builder Version 3.6.1 193 Help Guide

the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Columns — Specifications of the columns that match the data properties to be bound in the grid. See Grid
Columns Properties.

l Filterable allows the data to be filtered. This property is not bindable. Default: false

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters). Using a globally unique identifier (GUID) from GuidGen or GuidGenerator
prefixed by at least one letter prevents a clash with any other id. Id should contain only a to z (uppercase or
lowercase), 0 to 9, dash, or underscore. It should not have spaces. Binding is not supported for this property.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

The Model is passed to the workflow as an argument of type SerializableDynamicObject[]. This argu-
ment type will hold the data entered in the grid.

Examples:

o Grid Bound to an Entity
o Grid Bound to Custom Model Data (non-Entity),
o Grid Bound to Results of ExecuteODataQuery,
o CRM Grid for One-to-Many Relationships.

l Model Data — Defines the initial data as a JSON string.

Example:Grid Bound to Custom Model Data (non-Entity).

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 194 Help Guide

Note: When the Model Data property is used in conjunction with the Locale component and the user nav-
igates back to select a different Locale, the data displayed in the sequence will not be updated to reflect the
new Locale selection.

The Model Data property is not applicable for a grid that is bound to an entity.

l OData Query — OData query that overrides Model or Model Data if supplied.

Example: Grid Initialized via OData Query

OData Query is not used for editable grids.

l Page Size — If Pageable is true, Page Size will set the server-side paging size for the grid. Default: 20

l Pageable — If set to true, the grid will display a pager. This property is not bindable. Default: false.

l Product indicates the product from which OData query results are returned. Select from:

o Student
o CRM
o Occupation Insight

The selected product must be configured in the <products> section of the Renderer web.config file.

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Select "Occupation Insight" in the Product property if the source of the query will come from a different data
source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Sortable — Allows data to be sorted. This property is not bindable. Default: false.

Note: When paging, sorting and add record are enabled in a Grid component, if a user has paged or sorted
the grid, the add record operation will have inconsistent results because the grid display is being reorganized.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab

Forms Builder Version 3.6.1 195 Help Guide

to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

For more information, see Telerik documentation:

l Grid / Basic usage
l kendo.ui.Grid - Configuration

Grid Validation

The Grid component does not support a "Required" validation on the client-side. However, this can still be achieved
via workflow logic to verify a value has been set and if not, display a custom validation error.

To check if a numeric field within a grid has a value, use an If activity with the Condition "Is Nothing".

Also use If activities with appropriate conditions to check if a numeric value is in a range since numeric values within
a grid do not have range properties.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/
http://demos.telerik.com/kendo-ui/grid/index
http://docs.telerik.com/kendo-ui/api/javascript/ui/grid

Forms Builder Version 3.6.1 196 Help Guide

Grid Columns Properties

The Property Settings pane of the Grid component contains the Columns property settings with an Edit button that
brings up an editor for properties associated with the columns and rows of a grid. The properties available in the
editor override the property settings for the Grid component.

For example, when the Sortable property for the Grid component is set to true, you can set the Sortable property for
a column X to false so that column X is not sortable while all other columns in the grid are sortable. To change the
column title, add formats, attributes, or change the sortable and filterable properties, you need to specify this for
each column.

When editing Columns property settings, Chrome and Edge browsers will provide the best experience.

To specify properties using the Columns editor:

1. In the Property Settings pane of the Grid component, click the Edit button next to the Columns property set-
ting.

The editor is displayed in a popup window. It contains properties for the columns and rows in a grid. Place the
cursor over the fields to view the tooltips.

2. To specify column properties, click Add new column. The Edit window is displayed.

Forms Builder Version 3.6.1 197 Help Guide

3. Specify the properties for the newly added column in the Edit window.

The column properties include:

a. Property Name — Required (Kendo "field" name). Property Name must be a simple case sensitive
string starting with a letter, and followed by numbers, letters, or underscores. It must match a property
in your bound data, i.e., in the OData query or Model.

Rows of properties can be dragged in the grid to reorder them.

The Property Name and the Mapped Id must be different. For more information, see Mapped Id.

b. Title — The title of the grid column. If no titles are added, the title row will not be displayed.

c. Type — If the data is a date or a number, and the formatting is specified for either, this must be set to
the type the format acts on. The default is "string" and is not saved.

Forms Builder Version 3.6.1 198 Help Guide

The Type options are string, number, Boolean, Date, and Drop-down List.

The data source for the values in aDrop-down List Type can be an OData Query or aValue List
derived from the possible values for this property in the Model or Model Data.

Example 1: OData Query as Data Source for a Drop-down

In this example, an OData Query for Document Types populates the Drop-down List. The values spe-
cified in the Text Member and Value Member fields match parameters in the OData Query.

Note that the query in this example uses a filter based on another value on the form (cascaded quer-
ies). Drop-down lists will show Pending until a Campus is selected.

Note: When the Editable check box in the window above is selected, the Selection Text field appears,
and you can edit the selection text. When the Editable check box is cleared, the Selection Text field dis-
appears, unless you are using Firefox. In Firefox, the Selection Text field does not toggle. You can still
select or clear the Editable check box, then close the window, open it again and set the Selection Text
field as needed.

Example 2: OData Query for Id Value to Name Conversion in a Drop-down

A grid bound to an entity (e.g., StudentRelationshipAddressEntity) contains an Id value (e.g.,
AddressTypeId of 5), but in the grid you want to display the Name for that Id value (e.g., Parent). You
can use the drop-down list to convert the Id 5 to the name Parent.

Forms Builder Version 3.6.1 199 Help Guide

Example 3: Value List as Data Source for a Drop-down

Forms Builder Version 3.6.1 200 Help Guide

Note: When the Editable check box in the window above is selected, the Selection Text field appears,
and you can edit the selection text. When the Editable check box is cleared, the Selection Text field dis-
appears, unless you are using Firefox. In Firefox, the Selection Text field does not toggle. You can still
select or clear the Editable check box, then close the window, open it again and set the Selection Text
field as needed.

Example 4: Drop-down Selection Text Initialization

l If a form contains a grid without Model Data, Forms Renderer displays only the column titles
without any rows.

The example below shows grid with three columns: drop-downs for State and Address Type and
a Boolean (check box) for Default Address. The default Selection Text <Select> is used for the
drop-downs. The Inline Editor is specified for the row.

The data sources for the drop-downs are OData Queries:

UsaStates?$select=Code,Name,Id&$filter=IsActive eq true

AddressTypes?$select=Code,Name,Id&$filter=IsActive eq true

Forms Builder Version 3.6.1 201 Help Guide

When the user clicks Add New Record, a row is added and the values for the drop-down lists are
populated. The drop-down list Selection Text is displayed after the user clicks on a field.

l If a form contains a grid with Model Data for any property (not just drop-down), Forms Ren-
derer creates a blank row and initializes all drop-downs.

The example below shows a grid with three columns: State (drop-down), Address Type (drop-
down), and Note (string). The Selection Text property for the State drop-down is defined as
<Select State>. The In Cell Editor is specified for the row. The data sources for the drop-downs
are OData Queries.

The Model Data specified in the Grid control property settings is: [{ "State" : "" }]

When the user clicks Add New Record, a row with blank fields is added. The Selection Text labels
for the drop-down lists are displayed after the user clicks on a new field in the row.

Forms Builder Version 3.6.1 202 Help Guide

d. Format — The format that is applied to the value before it is displayed. It takes the form "{0:format}
where "format" is a standard number format. To format a date or number, the Data Type must be set
to "date" or "number".

When a date is selected, if there is no format, a default is used. The default date format is {0:d}.

 The default date format applies to Forms Builder 3.5 and later. The {0:d} format allows for inter-
nationalization, whereas the previous default format {0:MM/dd/yyyy} caused problems when used
with a European locales. Any forms with Format property created prior to Forms Builder 3.5 will need
to be manually updated and resaved to use the new default date format. Any forms created prior to
Forms Builder 3.5 that use the Format property with a date value need to be manually updated and re-
saved to use the new default date format if internationalization is required.

For more information, see standard number and date formats in Kendo documentation.

e. Attributes — HTML attributes of the table cell (<td>) rendered for the column. HTML attributes which
are JavaScript keyword (e.g., class) must be quoted, e.g., {"class":"myClass", style:text-align:right; font
size: 14px}

The value in the Attributes field can be a comma separated list within a pair of braces. Use quotes
around all properties and values. The Attributes value is added to the <td> element in the rendered
table for the grid.

The attribute value ... {"class":"myCustomFormat","style":"text-align: right; font-size:
14px"}

... results in the following
<td> element:

<td "class":"myCustomFormat","style":"text-align: right; font-size:
14px">my grid data</td>

f. Required— Makes the column required and marks it with a red asterisk on the rendered form.

When a column is required, any row where the column does not have a value will trigger a validation
message. The user will not be allowed to transition to the next page in the sequence until a value is
provided in the required column for all rows in the grid.

The Required property field can be set to false (default), true, or a Boolean expression.

http://docs.telerik.com/kendo-ui/api/javascript/kendo#standard-number-formats

Forms Builder Version 3.6.1 203 Help Guide

If an expression is specified, the expression will be evaluated at run time to determine if the column is
required or not. The expression is evaluated on page load of the page that contains the grid. It cannot
be updated on the same page.

If the data type for the column is Boolean, the Required property will either be hidden or disabled.

g. Minimum and Maximum values can be assigned to the following data types:

String Min Len and Max
Len

Specify the number of characters allowed in a
string.

Be careful if you are using a query to populate
grid because string values can have trailing
blanks.

Number Min Num and
Max Num

Specify the allowed numeric values. You can use
decimal values.

Date Min Date and
Max Date

Specify the allowed dates using the ISO 8601
format, e.g., 2018-10-28.

If you do not want to enforce minimum and maximum values, leave the min, max, or both fields blank.

If you want to bind the minimum and maximum values, specify the model bindings as follows:

String {{vm.models.minLen}} and
{{vm.models.maxLen}}

Forms Builder Version 3.6.1 204 Help Guide

Number {{vm.models.minNum}}
and {{vm.-
models.maxNum}}

Date {{vm.models.minDate}}and
{{vm.models.maxDate}}

Notes:

l Model bindings within a Grid component will not be used for initial workflow argument creation.
That means you need to create the corresponding arguments in the workflow, unless the argu-
ments were already created for fields in other forms.

l Model bindings for database fields can be used for min/max value bindings, e.g., stu-
dentAreaOfStudyEntity.DropDate can be used as a min value.

l Model bindings for School Defined Fields (SDFs) cannot be used because the ‘ ‘ character cannot
be handled. However, you could assign an SDF to another argument in workflow and use that.

l Model bindings for min/max values are not “dynamically” bound, i.e., user cannot change values
on the same form once the form is loaded. The values must be set on a preceding form in the
sequence.

h. Sortable — Makes the column sortable. Default is true if the Sortable property is set. Set true or false.

i. Filterable — Adds the ability to filter a column. Set true or false.

Forms Builder Version 3.6.1 205 Help Guide

j. Editable — Allows the column to be editable. When Enable Edit is set and this is turned off, the column
is read only.

This has no effect if Edit is not selected or a non-editable OData query is specified.

k. Template — A template can be supplied for a column. This option is limited because Renderer must
support the template. A Boolean data type does not use this property.

Example 5: Grid with Nullable Column

Grid OData query for entire previous education grid:

StudentPreviousEducation?$filter=Student/Id eq {{vm.-
models.studentEntity.Id}} and CollegeId gt 0&$se-
lect=Id,CollegeId,DegreeId,IsGraduated,GraduationDate&$expand=Student
($select=Id),College($select=Id,Name),HighSchool($select=Id,Name),Degree($se-
lect=Id,Name)

Template for nullable(Degree) column:

if (data.Degree == null) { # NA #} else { #
#:data.Degree.Name# #}#

For more information on how to use the Kendo embedded JavaScript to write a conditional template,
see https://docs.telerik.com/kendo-ui/framework/templates/overview.

Example 6: Grid with Navigation Properties where the Navigation Property can be Null

If the OData query for a grid column returns navigation properties (e.g., NavigationProgram1) where
the navigation property (Name) can be null and dotted notation is used (e.g., Nav-
igationProgram1.Name), a JavaScript error occurs when binding the data to the column.

To prevent the JavaScript error, the property should either be named arbitrarily or just with Nav-

igationProgram1 instead of the dotted property name. Then, the Template can be used to access
the data in the child row by checking for null on the navigation property, e.g.,

#= (NavigationProgram1 == null) ? ' ' : NavigationProgram1.Name #

The data displayed in the grid is controlled by the template and when null, NavigationProgram1 will
not cause JavaScript errors.

https://docs.telerik.com/kendo-ui/framework/templates/overview

Forms Builder Version 3.6.1 206 Help Guide

Resulting grid:

4. Click Update. The Edit window is closed and the new record is added to the property editor.

5. Click Add new record again, specify properties for the next grid column, and click Update again. Repeat
this step for each column in the grid.

6. When you have completed the properties for the columns, select appropriate properties for the rows in the
lower section of the editor.

The row properties include:

a. Enable Edit — Makes the row editable on the rendered form.

The default setting for this property is false. You can set it to true or specify a binding (e.g., vm.-
models.myEdit or vm.models.studentEntity).

When users are allowed to edit rows in the grid, the final transition in the workflow for the associated
sequence requires a SaveEntity activity for each entity item that is modified.

Forms Builder Version 3.6.1 207 Help Guide

b. Enable Add— Allows the addition of new rows to the grid.

The default setting for this property is false. You can set it to true or specify a binding (e.g., vm.-
models.myAdd).

Enable Add and Enable Edit should be used as coordinated pairs. If Enable Add=true and Enable Edit-

t=false, the rendered form will display a button that does not have any functionality. To pre-
vent the Confirm button from appearing on the form, set both Enable Edit and Enable Add to the same
value (false or true).

When users are allowed to add rows to the grid, the final transition in the workflow for the associated
sequence requires a SaveEntity activity for each item that is added.

Forms Builder Version 3.6.1 208 Help Guide

c. Enable Delete — Allows deletion of rows in the grid. The default setting for this property is false. You
can set it to true or specify a binding (e.g., vm.models.myDelete).

When users are allowed to delete rows from the grid, the final transition in the workflow for the asso-
ciated sequence requires a DeleteEntity activity for the entity item that is deleted.

Enable Edit, Enable Add, and Enable Delete can be bound dynamically (i.e., based on another setting in
the form or workflow). You may also use a Boolean value or expression.

Forms Builder Version 3.6.1 209 Help Guide

 If Enable Edit, Enable Add, or Enable Delete are bound with a vm.models. binding, when they are
changed from true to false or vice versa in a rendered form, the grid is completely refreshed with the
original data. You will lose any additions, modifications, or deletions from the grid up to that point.

d. Mapped Id— This property is used to uniquely identify rows within the grid. The Ids are used intern-
ally by the grid to save records to the database. The Ids are exposed only in the JSON in debug mode.

Mapped Id defaults to “Id” if not specified. If not present in the bound data, it will be assigned values
starting at 1. New rows will be given a value of -1.

An Id that is present in an entity argument in the workflow is used to find the row to update in the data-
base on a SaveEntity.

This property does not need to be mapped to a column. However, if the grid is initialized by an OData
query, ensure that this field is included in the Select statement.

o For most CampusNexus Student entities, the Id field can be used.

o For CampusNexus CRM entities, theKeyId field can be used.

If using a SerializableDynamicObject not bound to a defined entity, the grid will automatically assign a
unique Id to be used.

The Mapped Id is validated to ensure it is unique (case sensitive) for every row in the grid and based on
the data being passed to the grid.

If the Mapped Id is the same name as a Property Name, the Property Name must benot be editable. If
the Property Name is editable, an "Incorrect Configuration" error will be shown when you attempt to
save.

Forms Builder Version 3.6.1 210 Help Guide

e. Popup Editor — When edited, shows a popup editor containing the row being edited.

 The Popup Editor may not display the entire cell content for a drop-down list. In those cases, the In
Cell Editor can be more appropriate.

f. Inline Editor — When edited, puts the entire row into edit mode until saved or canceled.

g. In Cell Editor — No edit button will be displayed. Clicking on a cell puts that cell into edit mode.

Use the In Cell Editor to ensure proper tabbing through each item in a row and each row in grid if data
is entered using only the keyboard (i.e., not using mouse).

If you select Enable Add, adding and editing will both be enabled. Enable Edit=false will be overridden
by Enable Add.

h. Top— Adds a new row at the top of the grid.

i. Bottom — Adds a new row at the bottom of the grid.

7. Click Save. The property editor is closed.

To modify column and row properties:

Forms Builder Version 3.6.1 211 Help Guide

1. In the Property Settings pane of the Grid component, click the Edit button next to the Column property. The
property editor is displayed.

2. Click Edit to modify the column properties.

3. Click Delete to remove the column properties.

4. Drag rows in the column properties grid to reorder them.

5. Edit the row properties as needed,

6. Click Save to close the property editor.

Forms Builder Version 3.6.1 212 Help Guide

Grid Initialized via OData Query

You can add the Grid component to a form to display a read-only grid that displays data retrieved from the Cam-
pusNexus CRM or CampusNexus Student database. You will need to define an OData query to select the data to be
retrieved. You then configure the grid to display specific columns and perform sorting, paging, and filtering oper-
ations via its built-in property settings.

The grid populated by anOData query must be a read-only grid. Do not useOData queries for editable grids.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 213 Help Guide

This example shows the settings for a Grid Initialized via OData Query that displays relationship addresses for a spe-
cific student. The LookupUser and GetEntity<StudentEntity> activities in the workflow supply the Student Id value.
The OData query populates the rendered table.

Workflow Argument

Column Specifications for a Grid with OData Query

Unexpected results and additional columns may be seen when the grid is rendered with no Columns specified.

Grid Property: OData Query

The grid property OData Query supplies the data for a read-only grid. The Select statement for the OData Query
must include all Property Names specified in Column popup editor. Note in example below how FirstName,
LastName, and City are included in the Select statement and in the Column settings. The Property Name fields must
match the entity field names exactly and are case sensitive.

Example:

https://help.campusmanagement.com/WF/Content/Workflow/GetEntity.htm

Forms Builder Version 3.6.1 214 Help Guide

Stu-
dentRela-
tionshipAddresses?$select=FirstName,LastName,City,PostalCode,CreatedDateTime&$expand=AddressType
($select=Name)&$filter=StudentId eq {{vm.models.studentEntity.Id}}

Important

The OData query must contain a $select option to retrieve the field names (FirstName, LastName, etc.). If
column properties are specified, the Property Name field in the column editor must match the field name in
the OData query.

When an OData query contains an $expand option (e.g., $expand=AddressType($select=Name) to
retrieve properties within a node, the Property Name field in the column editor must use the dot notation, e.g.,
AddressType.Name.

Forms Builder Version 3.6.1 215 Help Guide

Grid Bound to an Entity

You can add the Grid component to a form that can be edited by the end-user. Any data entered or modified in the
grid can be used to update an entity record in the CampusNexus CRM or CampusNexus Student database. For
example, the grid may allow the end-user to attach documents that will then be stored in the database in the Docu-
mentEntity array. You can configure the grid to display specific columns and perform sorting, paging, and filtering
operations via its built-in property settings.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 216 Help Guide

Workflow Argument

Column Specifications for an Editable Grid bound to an Entity

Forms Builder Version 3.6.1 217 Help Guide

Grid Bound to CustomModel Data (non-Entity)

You can add the Grid component to a form that can be edited by the end-user. All contents of the grid should be
bound via Models property to a SerializableDynamicObject so that it will be displayed correctly when converted to
PDF. This applies to a PDF file saved as attachment to a document tracking record or a PDF file displayed in
DocuSign. You can configure the grid to display specific columns and perform sorting, paging, and filtering oper-
ations via its built-in property settings.

If the Model is specified and a workflow argument with a type of SerializableDynamicObject[] is used, then data in
row 2 of the grid for the property Frequency could be accessed in the workflow with myarg(1).DataDictionary

(“Frequency”).ToString.

The Model Data property is not applicable for a grid that is bound to an entity.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 218 Help Guide

Workflow Argument

Note: The argument name "healthHistory" is derived from the Model value in the Property Settings (vm.-
models.healthHistory). The argument type "SerializableDynamicObject" is found in the FormsBuilder.Entities
namespace.

Column Specifications for an Editable Grid with Model Data

Grid Property: Model Data

The grid property Model Data defines the initial data as a JSON string. If specified, it will initialize the grid by updating
the Model value on grid load.

To display the label <Select> in a drop-down list, the Model Data value must be initialized as “” (empty).

The Model Data JSON string is passed to the workflow as an argument of type SerializableDynamicObject[]. This argu-
ment type will hold the data entered in the grid.

If the Model has been initialized in the workflow to a non-empty array, this data will be used. If an OData query has
been specified, this data will not be used.

Forms Builder Version 3.6.1 219 Help Guide

Example:

[
{
"Question": "What is my question",
"Checkbox": "false",
"Frequency": "never",
"Note": "My note"
},
{
"Question": "What is my question 2",
"Checkbox": "false",
"Frequency": "never",
"Note": "My note2"
},
{
"Question": "What is my question 3",
"Checkbox": "false",
"Frequency": "never",
"Note": "My note3"
}

]

Data Types

In our example, theQuestion column uses a String data type. The Model Data JSON string initializes the strings in
each row asWhat is my question, What is my question 2, and What is my question 3. The Editable setting in the
column specification (see above) is cleared (false) because we don't want the end user to modify the questions.

The Checkbox column uses a Boolean data type which is rendered as a check box. The Model Data JSON string ini-
tializes the check box with the value false, i.e., the check box is cleared.

The Frequency column uses aDropdown List data type with the values never, rarely, frequently, and often. The Model
Data JSON string initializes the list with the value never.

Important: Any Dropdown List must be initialized, otherwise the Grid Component will fail. The initialization can
be done in the Model Data value or in the workflow.

The column specification for theDate column includes the Format specification of {0:MM/dd/yyyy}. The Date column
is not initialized in the Model Data JSON string.

TheNote column uses a String data type. The Model Data JSON string initializes the strings in each row asMy note, My
note2, and My note3. The Editable setting in the column specification is selected because we want the end user to
modify the notes.

Workflow Initialized List

Note: If the list is based on dynamic data and the Model Data static initialization method cannot be used, then fol-
low the step below to create a workflow initialized list.

When you are creating a Workflow Initialized List, the simplest object to use is a NameIdObject. With an array of

Forms Builder Version 3.6.1 220 Help Guide

these, the Text Member will be Name and the Value Member will be Id, and they will be of type string and integer
respectively. If you don’t need the Id, it is optional to set it.

In the workflow, create a variable (myList in this case). DO NOT use an argument or this will not work.

The type will be NameIdObject[] (array of NameIdObject). You can initialize the object with assign statements, but
since variables allow a Default value, use the following example.

In this example we want to create a list of 2 elements, where Yes is value 1 and No is value 2. Set Default to:

new NameIdObject(1){new NameIdObject With { .Name="Yes", .Id=1}, new NameIdObject With
{ .Name="No", .Id=2}}

Note some significant syntax here:

l The 1 for the array size is VB syntax for an array of 2 elements, with index 0 and 1.
l There is a dot before each property name in the With sections.

If you were doing this in assign statements, you could break the statements down as follows:

myList = new NameIdObject(1){} - creates a 2-element array that is empty.

myList(0) = new NameIdObject - initialize the first array element with a new object, “With” could have been used
here instead of the following two assigns.

myList(0).Name = “Yes”

myList(0).Id = 1

etc.

As you can see, the Default initialization above, while looking more complex, is less wieldy than a few assign state-
ments in the workflow.

To use this, you must expose this as an Out argument of type NameIdObject[]. After you create this argument, you
do this with a final assign statement.

myArgList = myList

The result is that all drop-down list controls that have vm.models.myArgList as the Model For Value List binding (in
the popup), will have a Yes/No list. Their Text Member must be Name, and if you use the Value Member, it must be
Id.

Note: If any of the following is true, then a SerializableDynamicObject can be used in the same way. It has none of
the following limitations.

a. You need more than two properties
b. The property names cannot be Name and Id
c. The types of the property names cannot be string and int respectively.

Forms Builder Version 3.6.1 221 Help Guide

However, the initialization for the SerializableDynamicObject is considerable more complex to understand to do the
same thing as above (with only 2 elements). Here it is:

new SerializableDynamicObject(1){new SerializableDynamicObject With { .DataDictionary
= new Dictionary (Of String, Object) From { { "Name", "Yes"}, { "Id", 1} } }, new Seri-
alizableDynamicObject With { .DataDictionary = new Dictionary (Of String, Object) From
{ { "Name", "No"}, { "Id", 2} } } }

You must do this with a variable, and then you must assign it to an argument which is bound to the control.

Forms Builder Version 3.6.1 222 Help Guide

Grid Bound to Results of ExecuteODataQuery

You can use the ExecuteODataQuery activity to bind the contents of a grid to the results of the OData query.

In this example, the form sequence contains a form that enables a student to enter the addresses of related per-
sons. The form prompts for the student's first and last name and presents a grid for the entry/display of the rela-
tionship addresses.

Grid Property Settings

Grid Columns Property Settings

Forms Builder Version 3.6.1 223 Help Guide

Rendered Component

Workflow Arguments

Forms Builder Version 3.6.1 224 Help Guide

The workflow for the sequence looks up the student identifier and retrieves the student entity.

The ExecuteOData activity captures the relationship address information and creates a results collection. The OData
Query is:

"http://stu-
dent-
web-
cli-
ent-
baseurl/d-
s/cam-
pus-
nex-
us/Stu-
dentRela-
tion-
shipAd-
dresses?$se-
lect-
=AddressTypeId,FirstName,LastName,City,StreetA-
ddress,State,PostalCode,Note,AddressBeginDate&$expand=AddressType
($select=Name)&$filter=StudentId eq >" & studentId

Forms Builder Version 3.6.1 225 Help Guide

The Assign activity writes the Results Collection "addrs.toArray" to the "myAddresses" argument that is defined in
the Model property of the grid.

Notes:

l The "toArray" attribute in the Assign activity will not be displayed in Intellisense.

l A manual import of the following namespaces is required:

o System.Collections.Generic
o System.Linq

After the Results Collection has been obtained, further workflow activities can be used to manipulate the grid, e.g.,
save, modify, or delete records.

The Grid component does not support a "Required" validation on the client-side. However, this can still be achieved
via workflow logic to verify a value has been set and if not, display a custom validation error.

Forms Builder Version 3.6.1 226 Help Guide

CRM Grid for One-to-Many Relationships

You can use the Grid component to create a form to retrieve/save records that are in a one-to-many relationship. In
a one-to-many relationship, the parent can have a single child record, multiple child records, or zero child records.
The child cannot have more than one parent record.

In the example below, the grid is used to populate child records for a CRM Contact entity. The child records contain
hobbies that are entered on the rendered grid.

To initialize this type of grid, workflow activities need to be used rather than OData queries. The workflow activities
use the "vm.models.HobbyGrid" Model property assigned in the Grid Property Settings. The rendered grid enables
the user to add child records (hobbies) for a given parent record (a contact named "Kaly").

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 227 Help Guide

Workflow Arguments

Workflow Variables

Column Specifications for an Editable Grid Initialized via Workflow Activities

Forms Builder Version 3.6.1 228 Help Guide

Initializing the Grid Using Workflow Activities

The first state in the form sequence workflows needs to be modified to initialize the grid for the child records.

1. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

2. Double-click the first state in the workflow. In our example it is the Welcome form.

3. Drag a Sequence activity into the Entry section of the Welcome form.

4. Drag a LookUpContact activity into the new Sequence and specify the following properties:

l ContactId: contactIId (This is a local variable of type Int32.)
l Display Name: Specify a name or accept the default.
l UserName: formInstance.UserName

Forms Builder Version 3.6.1 229 Help Guide

5. Drag aGetEntity activity below the LookUpContact activity and specify the following properties:

l Type: <Contact> (Use the "Browse for Type" option to find this type.)
l EntityId: contactId (This is a local variable of type Int32.)
l Result: contact (This is an In/Out argument.)

6. Drag aGetRelatedEntity activity below the GetEntity activity and specify the following properties:

l Type: <Contact> (Use the "Browse for Type" option to find this type.)
l ParentEntity: contact (This is an In/Out argument.)
l RelatedEntityName: "ContactKalyRecordLists" (This is the logical identifier of the related entity

that can be retrieved.)

Forms Builder Version 3.6.1 230 Help Guide

7. Drag an Assign activity below the GetRelatedEntity activity and specify the following properties:

l To: cnt (This is a local variable of type Int32.)
l Value: 0 (This value initializes the grid.)

8. Drag anotherAssign activity into the Sequence and specify the following properties:

l To: LocalHobbyGrid (This is a local variable of type Int32.)
l Value: New ContactKalyRecordList(contact.ContactKalyRecordLists.Count - 1){}

(This a local variable of type Cmc.NexusCrm.Common.Entities.ContactKalyRecordList[]. It associates
the child records with the parent record.)

Forms Builder Version 3.6.1 231 Help Guide

9. Drag a ForEach activity below the Assign activity and specify the following properties:

l TypeArgument: Cmc.NexusCrm.Common.Entities.ContactKalyRecordList
l Value: contact.ContactKalyRecordLists

10. Drag a Sequence activity into the Body section of the ForEach activity.

11. In the Sequence (in the Body section of the ForEach activity), drop an Assign activity for each row in the fol-
lowing table and type the indicated values:

"To" Field Value

LocalHobbyGrid(cnt) New ContactKalyRecordList

LocalHobbyGrid(cnt).KalyHobby item.KalyHobby

LocalHobbyGrid(cnt).KalyHobbyStartDate item.KalyHobbyStartDate

LocalHobbyGrid(cnt).OtherReason item.OtherReason

Forms Builder Version 3.6.1 232 Help Guide

"To" Field Value

cnt cnt + 1

12. (Optional) Drag a LogLine activity below the Sequence in the Body section of the ForEach activity and specify
the following properties:

l Level: Information
l Text: Newtonsoft.Json.JsonConvert.SerializeObject(LocalHobbyGrid,New-
tonsoft.Json.Formatting.Indented)

13. Drag an Assign activity below the LogLine activity and specify the following properties:

l To: HobbyGrid (This is the name of the In/Out argument of type ContactKalyRecordsList[].)
l Value: LocalHobbyGrid (This is the name of the variable of type ContactKalyRecordsList[].)

Forms Builder Version 3.6.1 233 Help Guide

HTML

You can use the HTML component to create form content marked up with standard HTML tags. You can also use
this component to add scripts or custom style fragments to a form.

Control Property Settings

Rendered Component

For more examples of HTML components, please see Welcome and Confirmation Forms.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

Note: The Class forms_builder_page_break enables you to set page breaks in PDF files with DocuSign
signatures. For more information, see Error Code "TAB_OUT_OF_BOUNDS".

l TheHTML property enables you to format rendered output using a subset of standard HTML markup as a
fragment of an HTML page. That is to say, <!DOCTYPE html>, <html>, <head>, <body> and <form> tags are
not appropriate in an HTML fragment. While they may not harm the page, they do have the potential to cre-
ate silent Renderer errors or cause the page render to fail completely. The HTML validation parser will point
out errors in the HTML fragment and mark them as a warning but will not attempt to enforce rules. Warnings

Forms Builder Version 3.6.1 234 Help Guide

should be corrected to avoid unexpected results.

An example of an HTML fragment is:

<h2 class=”myclass”>Campus View</h2>

Also possible are <script> and <style> fragments. This allows a great deal of customization. A model value can
be addressed in JavaScript with “window.vmModelsRef”. If you had an argument in a workflow “myKey”,
which would also be a model value “vm.models.myKey”, then in external HTML JavaScript this can be
addressed with “window.vmModelsRef.myKey” or “window.vmModelsRef[‘myKey’]”.

Similarly, parameters for the Renderer URL that are addressed with formIn-
stance.QueryParams.DataDictionary(“myKey”) or special case formInstance.QueryParams.DataDictionary
(“addonQueryParams”) in the workflow (see Renderer URL Query Parameter), can be addressed in external
HTML JavaScript as “window.vmQueryParamsRef.myKey” or “window.vmQueryParamsRef[‘myKey’]. This
would allow you to pass information in the renderer URL to your custom JavaScript (or even to a custom Style
via a binding). Of course, depending on how it is to be used, make sure your JavaScript and/or workflow val-
idates the information passed, or this could be a security risk.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Access Model Values Using JavaScript

The following is an example of creating client-side code to do something on a page. Suppose you have a name,
address, and state that a student has entered on a page and you want to add a check box which adds the func-
tionality to copy that name, address, and state to fields below that. The check box has the text “Mailing address dif-
ferent than residence address?”. The student would select the check box if the mailing address and residence
address are different. Furthermore, you want to only make the mailing address fields visible if the student has selec-
ted the check box.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 235 Help Guide

The top of the page has 3 fields: 2 text boxes for name and address and a drop-down list to select the state. The job
is to copy the model values for the 2 fields and the drop-down list value to fields below.

The models are:

l vm.models.studentName
l vm.models.studentResidenceAddress
l vm.models.studentResidenceState.

Below that you have the fields:

l vm.models.studentName
l vm.models.studentMailingAddress
l vm.models.studentMailingState

Note that the first field has the same model name (because it is assumed the student’s name is not going to change).

The following HTML will achieve the goals above:

<div>
 <input type="checkbox" ng-model="vm.models.myCheckBoxValue" onclick="myChange(this)" />
</div>
<script type="text/javascript">

function myChange(chkBx) {
if (chkBx.checked){
// vm.models values can be accessed externally with the global variable vmModelsRef (Forms

Builder 3.3. or above only)
vmModelsRef.studentMailingAddress = vmModelsRef.studentResidenceAddress;
vmModelsRef.studentMailingState = vmModelsRef.studentResidenceState;
} else {
// Clear the fields (not really necessary if you use the checkbox model value to determine if it

was checked)
vmModelsRef.destination1 = "";
vmModelsRef.studentMailingState = "-1"; // Basically a value that is not in the State list
}
}

</script>

Explanation:

l The onclick event of the checkbox runs the code myChange in the script block.

l The first statement checks if the checkbox is selected. If it is, copy the values.

l The internal vm.models.xxx values are accessed with the global variable vmModelsRef.xxx.

l The checkbox value can be made accessible in the workflow with an argument you create myCheck-
BoxValue (Boolean)

l The Visible property of the mailing fields is set to vm.models.myCheckBoxValue. When the checkbox is
selected, they appear.

l It is not necessary to handle the studentName in the code because it is the same value for both residence

Forms Builder Version 3.6.1 236 Help Guide

and mailing fields.

l The value of the drop-down list is not the same as the text shown, so the way to set the mailing state is to set
the same value. This is the vm.models value for both. This means they both must have the same Lookup
Query, Workflow Initialized List, or Value List and the same Text Member (Lookup Display Member) and Value
Member (Lookup Value Member). (See Drop-down List component).

Hint: If you are debugging this in a browser F12 Developer Tool, the statement “debugger;” inserted in the code will
cause the code to break in the debugger so that values can be examined.

DatePicker Widget

You can implement a custom DatePicker control on a form with Forms Builder's HTML component using the HTML
code and script below.

The documentation for the example it was derived from and the API for the DatePicker is found here:

l https://demos.telerik.com/kendo-ui/datepicker/index (see 2nd control on page for a live example of what it
does)

l https://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker (API for control - all properties, methods, and
events used below)

<!-- Note in the following example "myDate" is defined in a workflow as a string argument. In order
to store it as a DateTime object, that can either be done by converting it to and from one in a
workflow, or by changing the control below to handle a date object for both input and output. -->
<div id="example">

<div class="k-content">
<!-- Regardless of what other HTML you use with this custom control, "input" is the element

the script works on to create the control. Styling is something you work on after the functionality
works. The "value" below is input to the control from the workflow or from a durable instance if
the page is returned to after picking a value. It is interpolated from the model value when the
view is loaded. If no value is available, it displays default input text. -->

<input id="myMonthpicker" value="{{vm.models.myDate}}" title="monthpicker" style="width:
100%" />

</div>
</div>
<script>

$(document).ready(function() {
function onMyDateChange() {

// Using this event handler makes it easier to manipulate the output of the control.
// The value of the control is obtained with the value function on the control "this".
var val = this.value();
// You define the string format you want to present to the workflow with this format.

https://demos.telerik.com/kendo-ui/datepicker/index
https://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker

Forms Builder Version 3.6.1 237 Help Guide

var dtStr = kendo.toString(val, 'MMMM yyyy');
// The model is accessed externally with "vmModelsRef" so we assign "vm.models.myDate"

with this statement.
// This will appear in the workflow as argument "myDate" defined as string.
vmModelsRef.myDate = dtStr;
// For FB 3.5 and above you can update Debug JSON displayed at the bottom of the page

with the following method.
// Debug JSON does not update automatically from outside the FB application.
vmModelsRef.mergeVmModelsRef();
// Otherwise you can see the new value in the F12 console window of the browser.
console.log("My Date = " + dtStr);

}

// This is the definition of the kendo control using some of the properties and one event
$("#myMonthpicker").kendoDatePicker({

// When the value is changed in the control, this event is fired.
change: onMyDateChange,
start: "year",
depth: "year",
// This defines the format the control is expecting for input. Change this if a dif-

ferent format is used.
format: "MMMM yyyy",
dateInput: true

});
});

</script>

Set Default Values for Form Fields

You can use script in the HTML property of the HTML component to set default values for fields at the form level.
The script references the argument specified in theModel property of the component whose default value is set.
The script is case sensitive.

It is best practice to put all the HTML components used to set default values in a separate, invisible (Visible=false)
form section so that they don’t take up extra white space.

Examples:

Text Box

For a Text Box with Model = vm.models.myText, a hidden HTML component with the following script will set the
default value displayed on the rendered form to "This is some initial text".

<script>
vmModelsRef.myText = "This is some initial text";
vmModelsRef.mergeVmModelsRef();

</script>

Forms Builder Version 3.6.1 238 Help Guide

Drop-down List

For a Drop-down List with Model = vm.models.studentEntity.CampusId, a hidden HTML component with
the following script will set the default value to the name of the Campus with Id = 1.

<script>
vmModelsRef.studentEntity.CampusId = 1;
vmModelsRef.mergeVmModelsRef();

</script>

This example requires a CreateEntity or GetEntity activity for the studentEntity in the sequence workflow. If no
entity object is created, the default value cannot be set.

Numeric Text Box

For a Numeric Text Box with Model = vm.models.myNum, a hidden HTML component with the following script
will set the default value displayed on the form to 12.

<script>
vmModelsRef.myNum = 12;
vmModelsRef.mergeVmModelsRef();

</script>

Checkbox

For a Checkbox with Model = vm.models.myBool, a hidden HTML component with the following script will set
the default value to true (selected).

<script>
vmModelsRef.myBool = true;
vmModelsRef.mergeVmModelsRef();

</script>

HTML components that set default values should be made invisible, either by setting Visible=false on the HTML com-
ponents or by placing the HTML components in a form section where Visible=false.

Forms Builder Version 3.6.1 239 Help Guide

The Text Box, Drop-down List, Numeric Text Box and Checkbox examples with hidden HTML components setting
default values will be rendered as shown below.

Forms Builder Version 3.6.1 240 Help Guide

Hyperlink

You can use the Hyperlink component to point to a URL from a form.

Do not use the Hyperlink component in a form that will be converted to PDF with the PrintUrlToPdf workflow activ-
ity.

Control Property Settings

Rendered Component

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Hyperlink Target is set to _self by default. This property sets the target window or frame in which to dis-
play the webpage linked to when the Hyperlink control is clicked. Other values are _blank, _parent, and _

top. For more information, see https://www.w3.org/TR/html5/browsers.html#browsing-context-names.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

https://www.w3.org/TR/html5/browsers.html#browsing-context-names
https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 241 Help Guide

l Link Text is the link text displayed in the form. Binding is not supported for this property.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Url is the address of the linked website.

o It starts with http:// or https://.
o If spaces are required, they should be replaced with + or %20.
o If it is bound, it must begin with {{vm.models. and end with }}.
o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 242 Help Guide

IFrame

You can use the IFrame component to embed an HTML document or a website into a form. An IFrame (Inline Frame)
can insert content from another source into a form, for example, a signed form received from DocuSign.

The source files for the content in the IFramemust reside in the same domain as the form.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 243 Help Guide

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Name identifies the IFrame.

l Url is the address of the document to embed in the IFrame.

o It starts with http:// or https://.
o If spaces are required, they should be replaced with + or %20.
o If it is bound, it must begin with {{vm.models. and end with }}.
o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

When the IFrame component is used capture a DocuSign document, the Url property must be specified as
{{vm.models.frameUrl}}.

 Be sure to use the exact casing shown here.

l Visible makes the control visible or hidden.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 244 Help Guide

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Forms Builder Version 3.6.1 245 Help Guide

JSON Debug Info

You can use the JSON Debug Info component to help debug forms in production mode where the JSON information
is needed for a single form and not the entire site (see Settings) . The component is handy if you are debugging a
single form on a production website. You can use the visibility property to turn it off easily or even enable it from a
workflow.

When the JSON Debug Info component is added to a form, the values for objects on the form are shown at the bot-
tom of the rendered form. This data can be helpful for troubleshooting, especially for complex components on a
page where knowing the data that is available to a workflow during a transition will aid in debugging a workflow.

On form load, the Generated Model for Debugging section shows the Renderer Media Variables . As the form fields
are populated with values, the debugging section displays the values associated with each object on the form, i.e., all
model entity data on the page and new values entered are displayed in real time.

Note: JSON Debug Info output is not rendered when the sequence contains a View Summary component or a PDF
is created.

Control Property Settings

Note: If JSON debugging is enabled for the site and the JSON Debug Info component is added to a form, the JSON
information on the rendered form will be duplicated.

Rendered Component

Forms Builder Version 3.6.1 246 Help Guide

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

Forms Builder Version 3.6.1 247 Help Guide

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Forms Builder Version 3.6.1 248 Help Guide

Label

You can use the Label component to assign a stand-alone label, that is, a label not associated with a control (controls
have their own labels).

Control Property Settings

Rendered Component

This example uses the Label component for the text "Required Documents" and the HTML component for the listed
items.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

You can use HTML markup to customize the appearance of the label text (font, color, etc.).

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 249 Help Guide

If label text is not specified, some empty space will be displayed on the form.

The style of the label control is a default Bootstrap style. It can be modified. For more information, see
Modify the CSS for the Label.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Modify the CSS for the Label

The following styles determine the default styles for labels. They can be modified as needed. Copy the styles and
save your changes in a custom style sheet. For more information, see Custom Content and Custom Styles.

Default Style for Labels

The default style for the Label component can be modified by uncommenting the style definition below.

/* Defaults for a Label component. Applying one or more of these styles will override a default
bootstrap style, applying all will make it look like a control label. For the default theme you may
just want to set font-size: 100% (bootstrap sets it to 75%).
*/

/*.cmc-div-label.form-group span {
white-space: normal;
display: inline-block;
color: rgb(102,102,102);
background-color: white;
font-weight: 400;
text-align: left;
font-size: 14px;
font-style: normal;
line-height: normal;
font-family: "Source Sans Pro","Helvetica Neue",Helvetica,Arial,sans-serif";
}*/

You can adjust the style per your needs. For example, you may just want to specify a font size of 100% using the fol-
lowing CSS code:

.cmc-div-label.form-group span {
font-size: 100%;
}

Note: You can also use an HTML component to style the displayed label.

Forms Builder Version 3.6.1 250 Help Guide

Text Wrapping on Labels

The text wrapping on the Label component is controlled by the style definition shown below.

/* This rule applies automatically to divs surrounding the labels to make them wrap around */

.label-wrap > span {
white-space: normal;
}

Forms Builder Version 3.6.1 251 Help Guide

Locale

You can use the Locale component to display the cultures supported by controls in a form sequence. A culture
defines specific information for number formats, week and month names, date and time formats, currencies, etc.

In Form Designer, you select a set of cultures and specify which one will be the default. In Forms Renderer, the
Locale component will list all the locales selected in Form Designer, with the default culture automatically selected on
initialization of form. The user's locale selection is preserved on all forms in the sequence (see Internationalization).

Control Property Settings

Rendered Component

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Cultures — This property displays the full list of 700+ locales supported by Kendo controls.

Click the Edit button to select the cultures to be listed in the Locale component in a form. Designate one of
the selected cultures as the default. After you have saved your selections and you click Edit again, the selected
cultures will be displayed at the top of the list.

Forms Builder Version 3.6.1 252 Help Guide

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 253 Help Guide

<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Locale Assignment Using Workflow

You can set the default locale for a sequence using an Assign activity, e.g., formsInstance.Locale="it" (for Italian).

If the default locale is set in a workflow, the following condition needs to be provided in an If activity:

string.IsNullOrEmpty(formInstance.Locale)

The condition ensures that a user can update the value in the rendered Locale component and keep the updated
value when clicking Next / Back.

Forms Builder Version 3.6.1 254 Help Guide

Masked Text Box

You can use the Masked Text Box component for text that must conform to a specific format, e.g., social security
numbers.

Note: If the Masked Text Box component is used to specify a mask for phone numbers and the mask in Forms
Builder differs from the default mask for phone numbers in CampusNexus Student, unexpected results may occur.
The default mask for phone numbers in CampusNexus Student is “(###)###-####”. The mask for any phone num-
ber on a Forms Builder form should align with this mask.

Control Property Settings

Rendered Component

Workflow Arguments

Forms Builder Version 3.6.1 255 Help Guide

For workflow arguments used with the Masked Text Box in Forms Builder 3.5 and later, see Default Argument Types
for Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Format controls the input format for masked text values. The Mask Rules table lists the valid input char-
acters.

Rule Description

0 Digit. Accepts any digit between 0 and 9.

9 Digit or space. Accepts any digit between 0 and 9, plus space.

Digit or space. Like 9 rule but allows also (+) and (-) signs.

L Letter. Restricts input to letters a-z and A-Z. This rule is equivalent to [a-zA-Z] in regular expressions.

? Letter or space. Restricts input to letters a-z and A-Z. This rule is equivalent to [a-zA-Z] in regular expres-
sions.

& Character. Accepts any character. The rule is equivalent to \S in regular expressions.

C Character or space. Accepts any character. The rule is equivalent to . in regular expressions.

A Alphanumeric. Accepts letters and digits only.

a Alphanumeric or space. Accepts letters, digits and space only.

Mask Rules

Forms Builder Version 3.6.1 256 Help Guide

Rule Description

. Decimal placeholder. The decimal separator will be taken from the current culture used by Kendo.

, Thousands placeholder. The display character will be taken from the current culture used by Kendo.

$ Currency symbol. The display character will be taken from the current culture used by Kendo.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Placeholder is the prompt text displayed in a ghost style in an input box when nothing has been entered.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 257 Help Guide

o If this property is bound, it must start with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab

Forms Builder Version 3.6.1 258 Help Guide

index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Validation Message is the message shown when the user's input does not match the pattern of the regular
expression defined in the Validation Regex property.

l Validation Regex is the regular expression pattern to validate the input. Use site like RegExLib.com to
search and test Regex patterns, or construct your own with Regex tools like Expresso. If the user input does
not produce a Regex match, the "Validation message" will be displayed.

Examples:

o Regex that enforces a minimum of 11 digits for a phone number where the first digit must be "1": 1\d
{10}

o Regex that enforces a phone number in the format (###)###-####: ^\([0-9]{3}\)[0-9]{3}\-
[0-9]{4}$

o Regex that matches a hyphen-separated social security number: ^\d{3}-\d{2}-\d{4}$

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/
http://www.regexlib.com/Default.aspx
https://www.codeproject.com/Articles/3669/Expresso-A-Tool-for-Building-and-Testing-Regular-E

Forms Builder Version 3.6.1 259 Help Guide

Multiselect

You can use the Multiselect component to select multiple values from a list of values.

Forms Builder supports the following types of multiselect controls:

l Default multiselect controls for fields in the CampusNexus entity model. Built-in Lookup Queries retrieve the
list values for default multiselect controls. See example below,

l Custom multiselect controls using a Value List defined using the Edit button on the Value List property. See
Custom Multiselect with Value List.

l Custom multiselect controls using a Workflow Initialized List defined using the Edit button on the Value List
property. See Custom Multiselect with Workflow Initialized List.

The example below shows a default multiselect control for the Ethnicities field.

Refer to Multiselect for Single Property Collections for a special use case for this multiselect component.

Control Property Settings

Forms Builder Version 3.6.1 260 Help Guide

Rendered Component

Workflow Argument

Forms Builder Version 3.6.1 261 Help Guide

For workflow arguments used with the Multiselect in Forms Builder 3.5 and later, see Default Argument Types for
Components.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Filter Type defines how search values will be filtered. Select from the following filter types: contains (default),
endswith, and startswith. Values typed using the keyboard will be used to filter the list according to the selec-
tion.

l Header Template adds a header to the drop-down list. Specify the header using HTML. If quotes are used in
the HTML, they must be single quotes.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l ItemTemplate controls the layout of the data displayed in the drop-down list. Specify the header using
HTML. If quotes are used in the HTML, they must be single quotes.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Lookup Display Member is the name of the property in the OData query string to use for the display.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 262 Help Guide

For example, if the query string for a list of Ethnicities contains the Code, Name, and ID fields, the Lookup Dis-
play Member value can be set to Code, Name, or ID.

l Lookup Query is the OData query string to retrieve values for the control.

The following is an example of an OData query string that retrieves the Code, Name, and ID values from the
Ethnicities table, where isActive equals true and the returned values are sorted by Name.

Ethnicities?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name

Lookup Query is not used if a custom Value List is specified. See Custom Multiselect with Value List.

l Lookup Sort Member is the name of a property in a Lookup query string to sort on. By default, the Lookup
query sort order is used.

l Lookup Translation Members is a comma separated list of property names in an OData query string to be
translated. You should always validate the query will work in a browser. Only basic errors can be detected in
Form Designer.

l Lookup Value Member is the name of the property in the OData query string to use as the value.

o If the Lookup Value Member is an Id, the associated data type in Workflow Composer is Int32.

o If the Lookup Value Member is a Code or Name, the associated data type in Workflow Composer is
String.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

Forms Builder Version 3.6.1 263 Help Guide

Note: When the Multiselect is used to retrieve integer values and the field is optional (can be empty or
null), this must be accounted for when defining the variable for the model binding in the workflow.
Instead of defining the variable as an Int32, it must be defined as Nullable<Int32>. To do so: In
the "Browse and Select a .Net Type" window, browse to Type System.Nullable<T> and select Int32 in
the System.Nullable field.

l Option Label is the label in a drop-down list when no list value is selected. The default value is <Select>.

l Product indicates the product from which OData query results are returned. Select from:

o Student
o CRM
o Occupation Insight

The selected product must be configured in the <products> section of the Renderer web.config file.

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Select "Occupation Insight" in the Product property if the source of the query will come from a different data
source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-

Forms Builder Version 3.6.1 264 Help Guide

only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tag Template controls the layout of the data displayed in the selected items of the drop-down list. Specify

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 265 Help Guide

the header using HTML. If quotes are used in the HTML, they must be single quotes.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in
the multiselect control.

For examples of custom multiselect controls with Value Lists, see Custom Multiselect with Value List and Cus-
tom Multiselect with Workflow Initialized List.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Lookup Queries for CampusNexus CRM Metadata

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

Forms Builder Version 3.6.1 266 Help Guide

CustomMultiselect with Value List

You can use the multiselect component to create a custom list of values for selection. In our example, the custom
list contains values describing certain health conditions.

The Model property needs to define the Model binding for the selected value (e.g., vm.models.myConditionSelect),
and the argument type in the workflow needs to be set properly based on the list values (e.g., String). The selection
itself in main will NOT be of type SerializableDynamicObject[].

Note: A custom value list applies only to a specific component and cannot be reused for multiple multiselect com-
ponents on same page. For example, if "Conditions" is a multiselect for multiple sections on same page, each multise-
lect must define the value list with unique bindings.

This topic describes only the Value List property of the multiselect component. Refer to the Multiselect topic for
property settings other than Value List.

Control Property Settings

Forms Builder Version 3.6.1 267 Help Guide

Rendered Component

Forms Builder Version 3.6.1 268 Help Guide

Workflow Arguments

Use an argument of type String[] to capture the selections on the form.

Create a matching argument of type SerializableDynamicObject[] to make the Value List available in a workflow.

Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in the
multiselect.

Forms Builder Version 3.6.1 269 Help Guide

o In theModel For Value List field, specify the Model property to which the multiselect will be bound. The
value must start with "vm.models.", for example vm.models.myConditions.

o Select Value List to create a custom list. Use the Model property to bind the Value List. The Value List over-
rides an OData Lookup Query.

The Value List is available in a workflow if a matching argument of type SerializableDynamicObject[] is created.

To create the list, type each value in the input field and drag it to the list area. Click in the list area to delete
a value.

o In the Text Member field, specify the value that will be used as the DataTextField. This is a required field. In a
custom Value List, the Text Member value can be any string, e.g., Name.

Click Save to save the values source settings.

Forms Builder Version 3.6.1 270 Help Guide

CustomMultiselect with Workflow Initialized List

You can use the multiselect component to create a Workflow Initialized List of values for selection. Our example con-
tains a list of documents retrieved from the database using a workflow.

This topic describes only the Value List property of the multiselect component. Refer to the Multiselect topic for
property settings other than Value List.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 271 Help Guide

Workflow Arguments

Use an argument of type String[] to capture the selections on the form.
Use another argument to capture the values of the entity Lookup activity.

Workflow Activity

Use a Lookup activity to initialize the multiselect. The out-argument of the activity holds the entity values. The
Lookup activity must be placed on a form that precedes the form with the multiselect component.

Value List is an optional property. Click the Edit button to specify the source of the values to be displayed in the
multiselect control.

Forms Builder Version 3.6.1 272 Help Guide

o In theModel For List field, specify the Model property to which the multiselect will be bound. The Model For
List is required for a Workflow Initialized List. The value must start with "vm.models.", for example vm.-
models.myConditions.

o Select Workflow Initialized List to bind the values in the list to a Model property value. With this option,
the multiselect values are set in the workflow. The Workflow Initialized List overrides an OData Lookup
Query.

An easy way to create a workflow initialized list is to use one of the Workflow Composer Lookup activities
(LookupStudentTasks, LookupStudentAdvisors, etc.) if applicable.

o Note: When you are creating a Workflow Initialized List, the simplest object to use is a NameIdObject. With an
array of these, the Text Member will be Name and the Value Member will be Id, and they will be of type string
and integer respectively. If you don’t need the Id, it is optional to set it.

In the workflow, create a variable (myList in this case). DO NOT use an argument or this will not work.

The type will be NameIdObject[] (array of NameIdObject). You can initialize the object with assign statements,
but since variables allow a Default value, use the following example.

In this example we want to create a list of 2 elements, where Yes is value 1 and No is value 2. Set Default to:

new NameIdObject(1){new NameIdObject With { .Name="Yes", .Id=1}, new NameIdObject With { .Name-
e="No", .Id=2}}

Note some significant syntax here: the 1 for the array size is VB syntax for an array of 2 elements, with index
0 and 1. There is a dot before each property name in the With sections.

If you were doing this in assign statements, you could break the statements down as follows:

myList = new NameIdObject(1){} - creates a 2-element array that is empty.

myList(0) = new NameIdObject - initialize the first array element with a new object, “With” could have been
used here instead of the following two assigns.

myList(0).Name = “Yes”

Forms Builder Version 3.6.1 273 Help Guide

myList(0).Id = 1

etc.

As you can see, the Default initialization above, while looking more complex, is less wieldy than a few assign
statements in the workflow.

To use this, you must expose this as an Out argument of type NameIdObject[]. After you create this argu-
ment, you do this with a final assign statement.

myArgList = myList

The result is that all drop-down list controls that have vm.models.myArgList as the Model For Value List bind-
ing (in the popup), will have a Yes/No list. Their Text Member must be Name, and if you use the Value Mem-
ber, it must be Id.

Note: If any of the following is true, then a SerializableDynamicObject can be used in the same way. It has
none of the following limitations.

a. You need more than two properties
b. The property names cannot be Name and Id
c. The types of the property names cannot be string and int respectively.

However, the initialization for the SerializableDynamicObject is considerably more complex to understand to
do the same thing as above (with only 2 elements). Here it is:

new SerializableDynamicObject(1){new SerializableDynamicObject With { .DataDictionary = new Dictionary
(Of String, Object) From { { "Name", "Yes"}, { "Id", 1} } }, new SerializableDynamicObject With { .DataDictionary
= new Dictionary (Of String, Object) From { { "Name", "No"}, { "Id", 2} } } }

You must do this with a variable, and then you must assign it to an argument which is bound to the control.

o In the Text Member field, specify the value that will be used as the DataTextField. This is a required field. In a
Workflow Initialized List, the Text Member value must match a property in the workflow object collection
used to populate it, e.g., Id. In a custom Value List, the Text Member value can be any string, e.g., Name.

o In the Value Member Field, specify the value returned when item is selected in the multiselect. It may be the
same as Text Member.

Click Save to save the data source settings for the list values.

Forms Builder Version 3.6.1 274 Help Guide

Numeric Text Box

You can use the Numeric Text Box component to capture a single line of numeric information. In contrast to the
Text Box component, the Numeric Text Box does not use the Type property. Instead, the Numeric Text Box
provides the Decimals, Format, Restrict Decimals, Round, Step, and properties which can be used to qualify or
restrict the numeric input.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 275 Help Guide

Note: The Numeric Text Box is rendered with a selector that increments or decrements the typed number within
the range of the Max Number and Min Number values. For example, if Max Number=10 and Min Number=0, the
increments are 1, 2, 3, ...10.

Workflow Argument

For workflow arguments used with the Numeric Text Box in Forms Builder 3.5 and later, see Default Argument
Types for Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Decimals specifies the number precision. Can be blank, zero, or a positive integer. If blank, the current cul-
ture precision is used. If the user enters a number with a greater precision than is currently configured, the
value will be rounded. For example, if Decimals is 2 and the user inputs 12.346, the value will become 12.35.
If the user inputs 12.99, the value will become 13.00.

o If this property is bound, it must start with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Format property settings depend on the control type used:

Forms Builder Version 3.6.1 276 Help Guide

l Date Picker:

Specifies the format of the date and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: yyyy-MM-dd, MM-dd-yy (case sensitive: d for day of month, M for month, y for year)

l Time Picker:

Specifies the format of the time and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: HH:mm, hh:mm:ss tt (case sensitive: H or h for hour, m for minute, s for second)

See Kendo UI documentation for more information.

l Date Time Picker:

Combines the two above with both date and time.

l Numeric Textbox:

Specifies format of the numeric value. e.g., n2 - 2 decimal places, c - currency with cents

The date parsing and formats for these controls changed in Forms Builder 3.5. If you used date formats that
are no longer supported, you need to update and re-save the affected forms.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Max Length is the maximum number of characters in a text box.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessagel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Maximum Value specifies the maximum value for a Text Box with Type=number or a Numeric Text Box.
Leave blank for no maximum.

l Minimum Value specifies the minimum value for a Text Box with Type=number or a Numeric Text Box.

https://docs.telerik.com/kendo-ui/framework/globalization/dateformatting
https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 277 Help Guide

Leave blank for no maximum.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Placeholder is the prompt text displayed in a ghost style in an input box when nothing has been entered.

o If this property is bound, it must start with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

Forms Builder Version 3.6.1 278 Help Guide

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Restrict Decimals specifies whether the decimals length should be restricted during typing. The length of
the fraction is defined by the Decimals value. The default is false.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Round specifies whether the value should be rounded on truncated. The length of the fraction is defined by
the Decimals value. The default is false.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Step specifies the value used to increment or decrement the widget value. The default is 1.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab

Forms Builder Version 3.6.1 279 Help Guide

to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 280 Help Guide

Popup

You can use the Popup component to add a modal popup window to a form. The user clicks a button to open the
popup. While the popup is open, a semi-transparent background hides the rest of the page so that the user cannot
interact with the page until the popup is closed. The user can click the background or the button in the upper
right corner of the popup to exit the popup.

You can design the layout of the popup using Fields, a subset of the Components, and Form Sections in the same
manner as you would design the layout of any other form. Custom styling is also supported.

When you click the Edit button in the property settings of a Popup, the Components tab shows the subset of com-
ponents that are available for use in a popup.

Notes:

l Popup components should not contain any required fields. At this time client side validations are not sup-
ported in a Popup.

l The contents of a Popup is not displayed in PDF and View Summary, only the popup button is shown.

l On mobile devices, rendering of Popup components has some limitations. For example, the Grid and Cal-
endar components will not be displayed, other components will be reduced in size.

Control Property Settings

Rendered Component

Popup button on a form:

Popup window (after clicking the button):

Forms Builder Version 3.6.1 281 Help Guide

Properties

l Button Class is the CSS class for the button. The default is btn btn-primary.

o The class btn btn-primary is a Bootstrap class that renders as a blue button with white text.

o You can customize the CSS Class by selecting a different Bootstrap class or adding your own class in a
custom CSS.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Display Text is the label of a button.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals or underscore.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

Forms Builder Version 3.6.1 282 Help Guide

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Popup Layout — Click the Edit button to access the layout pane for the popup . The popup layout pane
uses the same space as the form layout pane, but provides separate Save and Cancel buttons while disabling
the forms tools bar.

The popup example rendered above has the following layout.

Design the layout of the popup using Fields, a subset of the Components, and Form Sections in the same
manner as you would design the layout of any other form.

Click the Save or Cancel above the popup layout and then save the form that contains the popup.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Visible makes the control visible or hidden.

https://www.guidgen.com/
https://guidgenerator.com/
https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 283 Help Guide

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Width specifies the width of the popup. If not set, it defaults to a width defined by the popup.

o Numeric values are treated as pixels.

o Binding is not supported for this property.

Forms Builder Version 3.6.1 284 Help Guide

Progress Bar

You can use the Progress Bar component to visualize the progress of an operation such as progress through a form
sequence. The component needs to be added to every form within the sequence.

The Visible property can be used to show or hide the progress bar on individual forms. The Visible property should
be bound to the workflow if the same form will be used with and without a progress bar.

The Current Value property must be dynamically bound and is updated in the workflow as the user progresses
though the sequence. If the progress bar is added to an end state form, a WaitForFormBookmark activity must be
added to update the Current Value on the final step.

Control Property Settings

Rendered Component

Workflow Argument

Forms Builder Version 3.6.1 285 Help Guide

The workflow assigns an integer value to the "progress" argument starting with 1 on the Step 1 form and incre-
menting the integer for successive forms that display the progress bar.

The Visible property is bound to the "proVisible" argument and a value of true is assigned to make the progress bar
visible on a form.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Current Value specifies the value for the progress bar, typically a positive integer. Usually, a bound value
from a workflow, e.g., {{vm.models.progress}}. This value can be dynamically changed in the client. To show
updated progress through form sequence this value must be incremented in workflow forward transitions
and decremented in workflow backward transitions. This is a required property.

l Custom Message is the message that is displayed when the Type property is "custom".

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

When the Type property is "percent", "segment", or "value", by default, the Label of the Progress Bar displays
the Current Value of the progress indicator, e.g., "90%". You can hide the default Label by setting the Show

Forms Builder Version 3.6.1 286 Help Guide

Value property to false and use the Custom Message property to display a custom message, e.g., "You are
almost done - only one more form to complete!"

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Maximum Value specifies the high end range of the progress bar, typically a positive integer indicating the
highest value when the progress bar is filled. This is a required property.

l Minimum Value specifies the low end range of the progress bar. The Minimum Value should be the pro-
gress value on the first form, usually 0 or 1.

Note: The Minimum Value and Maximum Value should be the first and last value for the Current Value prop-
erty. The number of forms in a sequence should be shown (including the end state if a filled progress bar is to
be displayed there). The Maximum Value should equal the number of forms or number of forms-1 depending
on if the first form shows progress or is empty. These values would be different only if the Progress Bar is
being used in another way (see Use Case: Compare Numeric Data) .

l Orientation specifies the orientation of the progress bar. Choose from supported orientations.

o horizontal (default)

o vertical

l Reverse specifies if the progress direction will be reversed. The default is false.

o This value cannot be changed dynamically.

o An expression cannot be used.

o (true and false must be all lowercase)

l Segment Count, if the Type property is set to segment, defines the number of sections displayed in the pro-
gress bar. Typically, this will be set to the same value as the Maximum Value (i.e., you have to know the max-
imum number of steps in the sequence).

l Show Value specifies if the progress status (number or percent) will be shown.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 287 Help Guide

o Must be true or false (default), or a binding beginning with "vm.models.".

o This value cannot be changed dynamically, so an expression cannot be used.

o (true and false must be all lowercase)

l Type specifies the measurement unit type of the progress bar. Choose from supported types:

o custom display based on Custom Message property

o percent display based on percentage

o segment display based on segments as set by the Segment Count

o value (default) display based on numeric value

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Use Case: Compare Numeric Data

The Progress Bar component can also be used as a bar graph to compare numeric data. The example below shows a
form that displays the seats taken in different classes. When the user selects a seat in a class, the workflow incre-
ments the number of seats taken and the bar graph displays the current value.

Forms Builder Version 3.6.1 288 Help Guide

Forms Builder Version 3.6.1 289 Help Guide

Radio Button

You can use the Radio Button component to represent a set of options, only one of which can be selected at any
time. The mutually exclusive options must be associated with a Group. For example, a Group could be labeled "Pri-
ority" and could contain three options labeled "Low", Medium", and "High". The selected value will be accessible
within a workflow definition.

For each option, drag a Radio Button component into the Layout pane. Arrange the components horizontally or ver-
tically. Specify the property settings for each control.

Control Property Settings

Forms Builder Version 3.6.1 290 Help Guide

Rendered Components

Forms Builder Version 3.6.1 291 Help Guide

Workflow Argument

For workflow arguments used with the Radio Button in Forms Builder 3.5 and later, see Default Argument Types for
Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Group is the name for a group of radio controls. All radio buttons that work together must have the same
group name. Use a unique argument name.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Model is required for binding to a workflow argument or another control. If the Model property is not

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 292 Help Guide

specified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such

Forms Builder Version 3.6.1 293 Help Guide

as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

Note: The tab index property applies to the radio button group. If a different tab index is specified for each
radio button in a group, the tab index of the first radio button is used for the group.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Value of the individual radio control in the group. This must be a string value, which may be a number. If the
value needs to be a number, it must be converted to one in a workflow.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.
o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.
o Values for each control in the group should be different.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Specify a Default Selection

The Radio Button component does not set a default selection for the Group. If you want to preselect an item in the
Group, use an Assign activity in the workflow to initialize the Group. Place the Assign activity in the workflow State
associated with the form with the Radio Button components.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 294 Help Guide

Create a Validation Item

The Radio Button component does not provide a Required setting for the Group. If you want to ensure that the
user selects an option in the Radio Button Group, add a CreateValidationItem activity to the workflow. Place the
activity on the Next transition that follows the form with the Radio Button components.

Forms Builder Version 3.6.1 295 Help Guide

Repeater

You can use the Repeater component to create a collection of form sections that will be repeated or deleted when
the user clicks the Add or Delete button. When the collection is repeated, it will show the fields (blank or initialized)
to be filled in while retaining the input of the previously completed section. When the Delete button is clicked, the
collection added last is removed.

The Repeater is basically a tabular component comprised of rows of components like Text Boxes, Drop-down Lists,
etc. Each one of these components has all the properties that they have as individual components.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 296 Help Guide

Properties

l Add Button Text is the value displayed in a link or button.

l If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

l Allowable suffix characters: starts with letter, then letters, numerals or underscore.

l Mixed text and bindings is allowed.

l Add Button Visible determines if the button is visible.

l Must be true or false, or a binding beginning with "vm.models.".

l A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

l An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<,!-
!=,==,>=,<=).

l If comparing to a string, it must be in single quotes.

l (true or false must be all lowercase)

l Button Class is the CSS class for the button. The default is btn btn-primary.

Forms Builder Version 3.6.1 297 Help Guide

o The class btn btn-primary is a Bootstrap class that renders as a blue button with white text.

o You can customize the CSS Class by selecting a different Bootstrap class or adding your own class in a
custom CSS.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Delete Button Text is the value displayed in a link or button.

l If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

l Allowable suffix characters: starts with letter, then letters, numerals or underscore.

l Mixed text and bindings is allowed.

l Delete Button Visible determines if the button is visible.

l Must be true or false, or a binding beginning with "vm.models.".

l A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

l An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<,!-
!=,==,>=,<=).

l If comparing to a string, it must be in single quotes.

l (true or false must be all lowercase)

l Display First Row causes the first Repeater row to display even if there is no data supplied by a workflow
argument.

o The first bound array value will be created with empty property values.

o Delete will not be available for the first row.

o This is not dynamically bindable (cannot take an expression) and must be set before the form is
rendered.

o If data is defined for the first row, this actually does nothing except prevent the first row from being
deleted.

o (true or false must be all lowercase)

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 298 Help Guide

spaces.

o Binding is not supported for this property.

l Include Form Sections causes each Repeater row to be enclosed in a form section panel.

l When checked, each repeat is embedded in form section panels corresponding to the number of form
sections in the Repeater layout. Normally, "Merge With Next" and "Merge With Previous" should be
checked appropriately on each of the layout form sections so that each repeat is in one containing
panel.

l When unchecked, individual repeats are not in form sections; however, the entire Repeater control is
by default unless it is merged with other form sections.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

Construction of the model in the workflow is done by assigning data from a provider.

Models for controls used within the Repeater Layout that are row specific must use this model with a special
array row number index, [$RepeaterRowNumber], followed by dot and the property name. For example, a
Text Box control in the Repeater can be addressed with vm.models.myRepeater[$Repeat-
erRowNumber].myText

An entity property within it can be addressed with vm.models.myRepeater[$Repeat-
erRowNumber].myEntity.myEntityProperty. $RepeaterRowNumber is replaced by the actual row number
index during render.

These values will be available in workflow arguments in exactly the sameway as other arguments without
the vm.models. prefix.

Note the types of these arguments are defined as dummy underscore arguments (e.g., _prevEd_stu-
dentEntity) when the workflow is initially created. If modifications aremade later, the workflow arguments
can be updated following the same pattern.

For more information, see RepeaterWorkflow Arguments.

l Repeater Layout — Click the Edit button to specify the layout of the Repeater component. See Example:

Forms Builder Version 3.6.1 299 Help Guide

Create a Repeater below.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Example: Create a Repeater

1. Drag theRepeater Component into the Layout pane for the form.

2. Specify theControl Property Settings for the Repeater. See Properties above.

In our example, we specified the Model value vm.models.prevEd and accepted the defaults for the remain-
ing properties.

3. Click the Edit button for the Repeater Layout.

The Repeater Layout pane will replace the Form Layout pane, and the Components tab will show a subset of
components that are available for use in a Repeater.

4. Select the number of Columns for the Repeater section and click the button.

5. Drag Fields and/or Components into the Repeater Layout pane and specify the properties for the selected
controls.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 300 Help Guide

Bound values in the Repeater are addressed with the model value and a row index placeholder which is sub-
stituted when the form is rendered. For more information, see Binding Values in a Repeater Layout.

In our example, the Repeater has 4 bound fields that are assigned the following model values in the Repeater
Layout pane:

Field Control Type Model Value

State Drop-down List vm.models.prevEd[$RepeaterRowNumber].studentEntity.State

High School Single-select
Search

vm.models.prevEd[$Repeat-
erRowNumber].studentPreviousEducationEntity.HighSchoolId

Graduation
Date

Date Picker vm.models.prevEd[$Repeat-
erRowNumber].studentPreviousEducationEntity.Gpa

GPA Numeric Text
Box

vm.models.prevEd[$Repeat-
erRowNumber].studentPreviousEducationEntity.GraduationDate

Example: Model Values for Controls in the Repeater Layout Pane

6. Click the section bar of the Repeater in the Layout pane and specify the Form Section Property Settings.
You can style the Repeater like any other form section. For more information, see Form Sections.

In our example, we specified the Title "Previous Education".

If you had two form sections in a layout, the first one could have "Merge with Next" checked, and the 2nd one
would have "Merge with Previous" checked. In that case, the two form sections would have minimal space
and no border between them. These properties work in pairs with one form section merging into the next.

7. Click the Save button above the Repeater Layout pane to save your design (or click Cancel to discard your
changes). You will be returned to the form layout.

8. Add the form with the Repeater component to a sequence and test the rendered sequence.

9. Locate the workflow for the sequence in Workflow Composer and review the initial arguments for the
sequence.

Forms Builder Version 3.6.1 301 Help Guide

TheprevEd argument of typeRepeaterSerializableDynamicObject[]was created based on the Model
value in the Repeater control property settings.

The dummy arguments _prevEd_studentEntity and _prevEd_studentPreviousEducationEntity argu-
ments were created based on the Model values in the State, High School, Graduation Date, and GPA fields.

For more information, see Repeater Workflow Arguments.

Binding Values in a Repeater Layout

Bound values in the Repeater are addressed with the Repeater model and a row index placeholder which is sub-
stituted when the sequence is rendered.

Example

The model for the Repeater Control Property Settings in the is vm.models.myRepeater.

Any binding in the layout which needs to be row-relative (i.e., row-specific) needs to provide an index to the prop-
erty.

For example, Renderer addresses a Text Box control in the Repeater Layout as:

vm.models.myRepeater[$RepeaterRowNumber].myText

$RepeaterRowNumber should be treated as case sensitive.

If a component property is not row-relative, that is to say it has the same value on every Repeater row, then it can
just be a regular binding like vm.models.myLabel.

The Debug JSON will correspond to the path. In the example above, it would look like this:

“myRepeater”: [
{
“myText”: “This is text in row 1”
},
{
“myText”: “This is text in row 2”
}

]

Forms Builder Version 3.6.1 302 Help Guide

This JSON shows “myRepeater” is an array of two objects, with each object having one property with a value. Please
see https://www.w3schools.com/js/js_json_syntax.asp for more information on JSON syntax.

Repeater Workflow Arguments

When a sequence is saved for the first time, workflow arguments are created for a Repeater. The Repeater model is
created as aRepeaterSerializableDynamicObject[], an array which works exactly like a SerializableDynamicObject
[] with a DataDictionary to reference its values.

In addition, each of the model properties within the Repeater Layout also gets a workflow argument. However,
these aredummy arguments. They are not used in either a form or the workflow and only tell Forms Builder the
type of each Repeater Layout argument. They are used during deserialization of the JSON Entities string to workflow
arguments and tell the deserializer what type to use.

The format of the dummy workflow arguments is:

<repeater model name><control model name> => Direction: In/Out => Argument type of control model

In the "myRepeater" Text Box above, the additional argument created would be:

_myRepeater_myText of type String

If an Entity field had been used in the Repeater layout such as a StudentEntity State property bound to a model vm.-
models.myRepeater[$RepeaterRowNumber].studentEntity.State, then the dummy argument would be:

_myRepeater_studentEntity of type StudentEntity

The JSON with two rows in this case would look like:

“myRepeater”: [
{
“studentEntity” : {

“State”: “CA”
}

},
“studentEntity” : {

“State” : “AZ”
}

}
]

Caveat: You cannot use a standard component to create an Entity field. Entity fields have extra properties to des-
ignate the type they are associated with. A component dropped from the Components tab does not. Doing this will
cause errors during a transition, unless you manually create a workflow dummy argument which describes the type
and allows the workflow argument RepeaterSerializableDynamicObject[] to be populated.

https://www.w3schools.com/js/js_json_syntax.asp

Forms Builder Version 3.6.1 303 Help Guide

Single-select Search

You can use the Single-select Search component to enable users to find and select a single item from a list. When the
user clicks on the component in a form, the Search Name dialog is displayed. The dialog allows the user to search for
a name, filter the list, or browse through the list pages, and select one item.

Note: The CampusNexus data model specifies the DisplayControlType of "SearchControl" for many properties.
When the Single-select Search component is dropped onto the Layout pane in Form Designer, the Single-select
Search component will be the default control type for properties that have the DisplayControlType of "SearchCon-
trol" in the metadata.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 304 Help Guide

Workflow Argument

For workflow arguments used with the Single-select Search in Forms Builder 3.5 and later, see Default Argument
Types for Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

Forms Builder Version 3.6.1 305 Help Guide

<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Filter Type defines how search values will be filtered. Select from the following filter types: contains (default),
endswith, and startswith. Values typed using the keyboard will be used to filter the list according to the selec-
tion.

l Grid Columns is set to an array of JSON objects. The "field" value is mandatory for each object. Use this prop-
erty to specify the columns displayed in the search results. For more details, see Adjust the Search Grid
Columns Property.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Lookup Display Member is the name of the property in the OData query string to use for the display.

Also see Adjust the Search Grid Columns Property.

l Lookup Query is the OData query string to retrieve values for the control.

Example: HighSchools

l Lookup Translation Members is a comma separated list of property names in an OData query string to be
translated. You should always validate the query will work in a browser. Only basic errors can be detected in
Form Designer.

l Lookup Value Member is the name of the property in the OData query string to use as the value.

o If the Lookup Value Member is an Id, the associated data type in Workflow Composer is Int32.

o If the Lookup Value Member is a Code or Name, the associated data type in Workflow Composer is
String.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 306 Help Guide

captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

The argument type for list items in Workflow Composer will be an integer array: System.Int32
[]

l Placeholder is the prompt text displayed in a ghost style in an input box when nothing has been entered.

o If this property is bound, it must start with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Product indicates the product from which OData query results are returned. Select from:

o Student
o CRM
o Occupation Insight

The selected product must be configured in the <products> section of the Renderer web.config file.

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Select "Occupation Insight" in the Product property if the source of the query will come from a different data
source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Forms Builder Version 3.6.1 307 Help Guide

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 308 Help Guide

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Lookup Queries for CampusNexus CRM Metadata

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

Adjust the Search Grid Columns Property

In Forms Builder 3.4 and later, the LookupDisplayMember value is used to populate default value for the Grid
Columns property on Single-select Search control types.

For example, when the LookupDisplayMember value is StaffName, the Grid Columns property default is
[{"field":"StaffName","title":"StaffName"}].

Forms Builder Version 3.6.1 309 Help Guide

If no LookupDisplayMember value is present, the default Grid Columns property will be [{"field": "Name", "title":
"Name"}] .

To display the Single-select Search control with two grid columns for the StaffName field and Code field, modify the
Grid Columns property as follows:
[{"field": "StaffName", "title": "StaffName"},{"field": "Code", "title": "Code"}]

Forms Builder Version 3.6.1 310 Help Guide

TabStrip

The TabStrip component enables you to place a container of tabs on a form or form section. Each tab represents an
existing form.

If you delete a form that is contained in a tab, the form will still be rendered, but attempts to export the
sequence will fail. The export error message will indicate the name of the missing form.

If you update a form that is contained in a tab, the tab version will not get the update until the form with
the tab reference is also re-saved.

Control Property Settings

Rendered Component

Forms Builder Version 3.6.1 311 Help Guide

Properties

l Animation - This value must be false or a valid JSON specification (true is not valid).

Example

{
"open": {

"effects": "fade:in",
"duration": 750

},
"close": {

"effects": "fade:out",
"duration": 1000

}
}

o The Animation property is not used when the Position is left or right.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Collapsible - Tab contents can be toggled between visible (expanded) and non-visible (collapsed). The default
is collapsed when selected. This property is not bindable.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Tab Position - The relative position of the tabs with respect to the content. Select a value from the drop-
down list. The options are:

o bottom
o left
o right
o top

The property is not bindable.

l TabStrip Configuration - Click the Edit button to select the forms to display in the TabStrip and to assign the
tab labels. See Create a TabStrip.

l Visible makes the control visible or hidden.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 312 Help Guide

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Create a TabStrip

1. Drag the TabStrip component into the Layout pane.

2. Click the Edit button in the Control Property Settings pane. The TabStrip Configuration window is displayed.

3. In the Existing Forms section, select a form and click the right arrow to move the form to the Tabs pane.

4. In the Tab Label field, specify a label for the tab.

5. Repeat steps 3 and 4 for any additional tabs.

l To reorder tabs, select a form in the Tabs pane and click the up/down arrows.

l To remove a form, select the form in the Tabs pane and click the left arrow.

6. After you have completed the tab configuration, click Save. The TabStrip Configuration window is closed.

7. Specify additional settings for the TabStrip in the Control Property Settings pane.

8. Save the form or form section.

Forms Builder Version 3.6.1 313 Help Guide

Text Box

You can use the Text Box component to capture a single line of information. The input type for the Text Box com-
ponent is defined by the Type property. You can choose from the following Type values: text (default), email,
password, number, url. The available properties depend on the selected input type.

l For text, you can specify the Min and Max Length values.

l For number, you can specify a minimum and maximum value.

l password allows input to be hidden with “*”.

l email and url have built in validations for proper format.

The example for Text Box (Type =Text) below shows how you could dynamically bind the Text Box component itself
(Model = vm.models.myTextBind) and several other fields: PlaceHolder, Required, RequiredMessage, and Tooltip.

Example: Text Box Type = Text

Control Property Settings

Forms Builder Version 3.6.1 314 Help Guide

Rendered Component

Workflow Arguments

Forms Builder Version 3.6.1 315 Help Guide

For workflow arguments used with the Text Box in Forms Builder 3.5 and later, see Default Argument Types for
Components.

Example: Text Box Type = Number

Control Property Settings

Rendered Component

Note: The Text Box for Type=Number is rendered with a selector that increments or decrements the typed number
within the range of the Max Number and Min Number values. For example, if Max Number=10 and Min Number=0,
the increments are 1, 2, 3, ...10.

Forms Builder Version 3.6.1 316 Help Guide

Workflow Argument

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Max Length is the maximum number of characters in a text box.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessagel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Maximum Value specifies the maximum value for a Text Box with Type=number or a Numeric Text Box.
Leave blank for no maximum.

l Min Length is the minimum number of characters in a text box.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 317 Help Guide

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessagel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Minimum Value specifies the minimum value for a Text Box with Type=number or a Numeric Text Box.
Leave blank for no maximum.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Placeholder is the prompt text displayed in a ghost style in an input box when nothing has been entered.

o If this property is bound, it must start with {{vm.models. and end with }}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

In the Text Box (Type = String) example above, the Placeholder property is bound to the workflow through
the myPlaceHolder argument. The syntax for the binding is as follows (note the double curly braces):

{{vm.models.myPlaceHolder}}

This argument allows the ghost text to be defined in the workflow as shown below using the Assign activity.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

Forms Builder Version 3.6.1 318 Help Guide

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

In the Text Box (Type = String) example above, the Required property is bound to the workflow through the
myRequired argument. The syntax for the binding is as follows (note that curly braces are not needed here
because 'Required' is a Boolean property):

vm.models.myRequired

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

In the Text Box (Type = String) example above, the Required Message property is bound to the workflow
through the myReqMsg argument. The syntax for the binding is as follows (note the double curly braces):

{{vm.models.myReqMsg}}

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page

Forms Builder Version 3.6.1 319 Help Guide

followed by any higher numbered tab indices, followed by any other keyboard focusable elements
such as buttons. required fields, and CAPTCHA. The tab index value should not match another con-
trol's tab index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

In the Text Box (Type = String) example above, the Required property is bound to the workflow through the
myTextTooltip argument. The syntax for the binding is as follows (note the double curly braces):

{{vm.models.myTextTooltip}}

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Type is the input type for the component. Choose from the supported types. The directive for this attribute
produces a standard <input> tag. The default for the Type value is set based on the control type (e.g., for the
Text Box component, the default is text). Other Type values can be selected in the Value field: password,
email, number, url.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 320 Help Guide

Textarea

You can use the Textarea component to capture multiple lines of text information.

Control Property Settings

Rendered Component

Note: The rendered component is resizable; a scrollbar is added automatically.

Workflow Argument

Forms Builder Version 3.6.1 321 Help Guide

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 322 Help Guide

workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

Forms Builder Version 3.6.1 323 Help Guide

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 324 Help Guide

Time Picker

You can use the Time Picker component to allow form users to select a time in hours, minutes, and seconds. The
time format is defined in the property settings for the component.

Control Property Settings

Rendered Component

Workflow Argument

Forms Builder Version 3.6.1 325 Help Guide

The default time is 12:00 AM. To display a different default, set it in the workflow.

For workflow arguments used with the Time Picker in Forms Builder 3.5 and later, see Default Argument Types for
Components.

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disable Input Text disallows typing in the field. When true, dates must be selected from the date picker
popup.

o If this property is bound, it must start with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Format property settings depend on the control type used:

l Date Picker:

Specifies the format of the date and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: yyyy-MM-dd, MM-dd-yy (case sensitive: d for day of month, M for month, y for year)

l Time Picker:

Forms Builder Version 3.6.1 326 Help Guide

Specifies the format of the time and, when text input is allowed (Disable Input Text = false), the parsing
of typed text.

Examples: HH:mm, hh:mm:ss tt (case sensitive: H or h for hour, m for minute, s for second)

See Kendo UI documentation for more information.

l Date Time Picker:

Combines the two above with both date and time.

l Numeric Textbox:

Specifies format of the numeric value. e.g., n2 - 2 decimal places, c - currency with cents

The date parsing and formats for these controls changed in Forms Builder 3.5. If you used date formats that
are no longer supported, you need to update and re-save the affected forms.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Interval for the time picker. The default is 30 minutes.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myInterval}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the

https://docs.telerik.com/kendo-ui/framework/globalization/dateformatting
https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 327 Help Guide

workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

Forms Builder Version 3.6.1 328 Help Guide

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such
as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

This control has the capability to output an ISO 8601 String value which is converted to a DateTime or DateTimeOff-
set object (depending on the type of the workflow argument). For more information, see Date & Time Values and
Offsets.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 329 Help Guide

Tooltip

You can use the Tooltip component to add a customized tooltip to any page element. The tooltip can contain text,
animation effects, and images. A unique CSS selector path in the Target Selector property identifies the element to
which the tooltip applies.

Most components already have a tooltip property, but for a complex element like the grid, which may require the
user to perform several operations (add, edit, delete), you may want to be more exact and only show a tooltip when
the Add New button selected for example.

Drop the Tooltip components in a non-visible form section. Use as many Tooltip components as needed. This is a
general purpose component that can be made to appear on any page element including form components, form sec-
tions, images, etc.

Control Property Settings

Rendered Component

Example 1

Example 2

Forms Builder Version 3.6.1 330 Help Guide

Properties

l Animation — The value must be false or a valid JSON specification.(false must be all lowercase, true is not
valid)

Example

{ "open": { "effects": "fade:in", "duration": 750 }, "close": { "effects":
"fade:out", "duration": 1000 } }

l Content — The content to display when hovering over the target element.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals or underscore.

o HTML is supported. If you want translatable HTML, make sure the element that contains the text has
the "translate" attribute added. This will be picked when the POT file is generated and be available for
translation. A string with no HTML does not need a "translate" attribute as it will be embedded in a div
with the attribute.

Example 1

Content value for a tooltip with straight text:

Only Add new addresses that relate to FA forms

Example 2

Content value for a tooltip with an image and text that will be translated.

<div>

<p translate>My custom text</p>

</div>

l Height — Optional property used to override the default height.

o Numeric values are treated as pixels.

o This property cannot be bound.

l Relative Position — The position of the tooltip relative to the element. If there is not enough room in a con-
tainer, a tooltip may override the chosen position.

l Target Selector — CSS selector for the tooltip target. Choose a CSS selector which targets (usually a unique)

Forms Builder Version 3.6.1 331 Help Guide

container element for a tooltip. (Using an element would be too broad a selector.)

For a class selector, use a dot in front of the class name: e.g., “.myClass”

For an Id selector, use a # in front of the Id: e.g., “#myId”

To find a unique CSS selector path to an element:

1. Access the rendered form in a browser.

2. Right-click the content of interest (e.g.,Add New Record button) and depending on browser select
the equivalent to the Inspect Element context item.

3. On the Elements tab of the browser tools, locate the element's CSS class and Id.

The highlighted line shows the class name for the button. In our example it is:

l class="k-button"

The div above the button has the class name:

l class="k-header k-grid-toolbar"

The id for the div is found higher up in the hierarchy. In our example it is:

Forms Builder Version 3.6.1 332 Help Guide

l <div id="idadf80fb8-e4af-9e2d-5138-0e1b78cf6a74">

These three items are required to specify the Target Selector value in the Tooltip component. The
format requirements are:

l Ids have a # prefix.
l Classes have a . (dot) prefix.
l Elements have no prefix.

In our example the Target Selector value is specified as:

l #idadf80fb8-e4af-9e2d-5138-0e1b78cf6a74 .k-header.k-grid-toolbar .k-button

Note that there is no space between .k-header and .k-grid-toolbar. This indicates that the CSS classes
are in the same element (not in a hierarchy).

Also note that .k-button alone would not have been unique because there are other .k-button classes
within the grid.

Lastly, note that we did not choose every element or class in the path hierarchy (we skipped some) and
used only the ones that would make the path unique. (There are many combinations that would result
in a unique path).

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Width — Optional property used to override the default width.

o Numeric values are treated as pixels.

o This property cannot be bound.

Forms Builder Version 3.6.1 333 Help Guide

Typeahead

You can use the Typeahead component to perform a basic search on a list using a 'Contains' condition based on
three characters. Auto-complete matches are displayed in a drop-down. This control type finds existing records and
relates them to the entered characters.

Control Property Settings

Rendered Component

Workflow Argument

Forms Builder Version 3.6.1 334 Help Guide

Properties

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Disabled sets a control to disabled.

o Must be true or false, or a binding beginning with "vm.models.".

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Label is the value displayed in the label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Lookup Display Member is the name of the property in the OData query string to use for the display. .

For example, if the query string for a list of PreviousEducationCodes contains the Code, Name, and ID fields,
the Lookup Display Member value can be set to Code, Name, or ID.

l Lookup Query is the OData query string to retrieve values for the control.

The following is an example of an OData query string that retrieves the Code, Name, and ID values from the
PreviousEducationCodes table, where isActive equals true and the returned values are sorted by Name.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 335 Help Guide

PreviousEducationCodes?$select=Code,Name,Id&$filter=IsActive eq true&$orderby-
y=Name

l Model is required for binding to a workflow argument or another control. If the Model property is not spe-
cified, the component will be displayed on the form, but any values the user enters on the form cannot be
captured or used in the workflow.

o The Model value must always start with "vm.models.", e.g., vm.models.myArgument.

o This value may initialize the control, and may be updated by the control, and if matched to a workflow
argument, is available in the workflow (readable or writable).

o Ensure your model argument is defined in your workflow for custom components if it is used in the
workflow. Otherwise, a workflow argument is not required.

o The casing of an argument used in the workflow MUST match the "vm.models." suffix casing.

o If the model addresses CustomProperties or MultiValueCustomProperties, the property identifier
string must be enclosed in single quotes, e.g., vm.models.myentity.CustomProperties['mycus-
tomprop']

If an OData query is specified and this binding is specified, it will be overwritten with the value of the OData
query results and thus be available read-only in the workflow.

If only "Model Data" is specified and the workflow variable is either not initialized or set to an empty array,
this value will be initialized to the "Model Data" value.

Construction of the model in the workflow is done by assigning data from a provider.

l Product indicates the product from which OData query results are returned. Select from:

o Student
o CRM
o Occupation Insight

The selected product must be configured in the <products> section of the Renderer web.config file.

The default Product value will be "Student" if "Student" is selected in the <Select Provider> list on the Fields
tab.

The default Product value will be "CRM" if "CRM" is selected in the <Select Provider> list on the Fields tab.

Select "Occupation Insight" in the Product property if the source of the query will come from a different data
source other than Student/CRM. For more information, see Build Queries for Occupation Insight.

A form can have multiple controls that retrieve data from different providers. For example, a form can have a
control that is populated by a query to the Student database. The same form can have another control that
retrieves data from Occupation Insight.

Forms Builder Version 3.6.1 336 Help Guide

Specify the query to retrieve data from the selected provider using the Lookup Query or ODataQuery prop-
erty (as applicable for the control). The query contains only the URL specific part of an OData URI. The Base
URL and Product will be supplied by the configuration.

l Read-only makes the control read-only. It is set to false by default. If you want the component to be read-
only, set the property value to true. It is typically used for an input box.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l Required Message is optional. It overrides the default "Required" message.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myMessage}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Tab Index — This property allows you to specify the order of elements that are brought into focus when the
user presses the Tab key on the rendered form. Allowed values are -1, 0, and positive numbers.

o A value of "-1" removes the element from the sequential tab order preventing keyboard users from
focusing on it.

o A value of "0" means the element is ignored in the tab order, but that does not mean users cannot tab
to and focus an element.

o A value of "1" will make an element the first item to gain focus when tabbing through the page fol-
lowed by any higher numbered tab indices, followed by any other keyboard focusable elements such

Forms Builder Version 3.6.1 337 Help Guide

as buttons. required fields, and CAPTCHA. The tab index value should not match another control's tab
index.

o A blank value (default) will not add a tab index in the HTML.

For more information, see https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
and https://www.alexlande.com/articles/cross-browser-tabindex-woes/.

l Tooltip is the value to display when hovering over the control's label.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myTooltip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

We suggest using the Tooltip property on the Typeahead component to instruct the user to enter search text
to view all matching values.

l Tooltip Duration is the amount of time in milliseconds a tooltip is displayed (default=750). The value must
be greater than 0. If it is set to 0, a form validation error will occur.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myToolTip}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Lookup Queries for CampusNexus CRM Metadata

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

https://html.spec.whatwg.org/multipage/interaction.html#the-tabindex-attribute
https://www.alexlande.com/articles/cross-browser-tabindex-woes/

Forms Builder Version 3.6.1 338 Help Guide

View Summary

You can use the View Summary component to capture the content of forms within a sequence before submitting
the information that will be persisted to your system. The data displayed via the View summary component is
retrieved from the durable instancing table instead of workflow tracking.

Important Notes
• In DocuSign sequences, a form with View Summary component should be placed before theDefault-Frame

where the DocuSign redirection occurs. This allows the user to review and, if necessary, change form input
before proceeding with the DocuSign redirection. Do not place a form with View Summary component after
theDefault-Frame form.

• Any form with View Summary component should set Include in View Summary to false.

Forms Builder 3.4 and later provides enhanced validation when saving a sequence. A sequence cannot be
saved if at least one form in the sequence has a View Summary component, but the Include in View Summary
property is not selected on any of the forms in the sequence.

The placement of the View Summary component within the sequence determines the content captured by the com-
ponent. If View Summary is placed on the last form in a sequence, it captures the content of all preceding forms.

The data displayed by the View Summary component is not editable. After reviewing the data, the user may click the
Back button to return to the form whose data is captured and make revisions. Therefore, the View Summary com-
ponent must be placed on a form that contains a Back button, i.e., it should not be placed in an end form.

We recommend placing the View Summary component on a separate form within the sequence (just before the end
form) along with HTML components that provide instructions to:

l Review the data
l Use the Back button to make revisions on the forms within the sequence

The form property "Include in View Summary" controls whether the content of a form is displayed by the View Sum-
mary component. "Include in View Summary" is selected by default. For more information, see Form Properties.

Note: JSON Debug Info output is not rendered when the sequence contains a View Summary component or a PDF
is created.

Control Property Settings

Forms Builder Version 3.6.1 339 Help Guide

Workflow Argument

— NA —

Rendered Component

Forms Builder Version 3.6.1 340 Help Guide

Properties

l Button Class is the CSS class for the button. The default is btn btn-primary.

o The class btn btn-primary is a Bootstrap class that renders as a blue button with white text.

o You can customize the CSS Class by selecting a different Bootstrap class or adding your own class in a
custom CSS.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS specific to
the control can be applied. The class must be defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

l Create View Summary PDF is the value displayed in a link or button used to create a PDF file of the
sequence.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Display As Optional is set to false by default. The value must be true or false (all lowercase) or a binding

Forms Builder Version 3.6.1 341 Help Guide

beginning with "vm.models.".

o Set this to true if you would like the user to decide if they would like to view the summary or not. The
View Summary button is displayed on the rendered form, but the summary itself is hidden. If the user
clicks the button, the summary is displayed, and the button label changes to "Hide Summary".

o When set to false, the button is not displayed, and the summary is displayed.

l Hide Button Text is the value displayed in a link or button used to hide the sequence summary view.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to 9, a to
z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least one let-
ter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not have
spaces.

o Binding is not supported for this property.

l Print Visible makes the print button visible when set to true (default = false). When the print button is
clicked, Forms Builder creates a PDF that can then be saved or printed.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

l View Button Text is the value displayed in a link or button used to display the sequence summary.

o If this value is bound, it must be enclosed in double braces, e.g., {{vm.models.myLabel}}.

o Allowable suffix characters: starts with letter, then letters, numerals, or underscore.

l Visible makes the control visible or hidden.

o Can be bound to a workflow argument or another control's value. This property is dynamic.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 342 Help Guide

<=). If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

Notes:

l The View Summary functionality is not supported in Internet Explorer (IE) and Firefox browsers. When the
View Summary button is clicked in IE or Firefox, the following message is displayed: "View Summary is not sup-
ported in IE or Firefox. Use Chrome or Edge."

l In the PDF file created by the View Summary control, if a form contains controls with long text strings in the
Option Label property, the label may overwrite the label of the adjacent control. In the rendered form, the
Option Label text will be truncated to fit in the space available to the control.

Forms Builder Version 3.6.1 343 Help Guide

Forms Builder Version 3.6.1 344 Help Guide

Form Sections
A form section is a set of fields and section dividers in the Layout pane of Form Designer. Form sections can be
styled as distinct segments within a form, and they can be saved to reusable units.

Style Form Sections Within a Form

For any form section within a form, you can use the Title and Class properties to change the rendered display of
the form section.

The default rendering of a form section title is shown below.

Forms Builder Version 3.6.1 345 Help Guide

When any custom style defined in a .css file and specified in the Class property is applied to a form section, it mod-
ifies entire form section, not just the Title.

The following "my-custom-style" definition is rendered as shown below.

.my-custom-style {
white-space: normal;
background-color:lightblue !important;
}

Forms Builder Version 3.6.1 346 Help Guide

To apply a class style only to the form section title, use a .css definition similar to the following example:

.my-custom-TitleStyle > span.fb-form-section-title {
width: 100%;
white-space: normal;
display: inline-block;
background-color:darkgray !important;

Forms Builder Version 3.6.1 347 Help Guide

When you design a form with hidden fields or form sections, you may need to hide the empty space for DocuSign
components to ensure that the form is rendered as intended. To hide the space for DocuSign components:

1. Place the DocuSign components in their own form section (usually at the bottom of a form).

2. In the Form Section Property Settings, specify the Class namehideDocuSignWhiteSpaceInFormSection.

3. Save the form. Forms Builder will not render the form section on the screen but will allow it to render when it
is printed to a PDF.

Visible Property

The Visible property is available for Form Sections in Forms Builder 3.4 and later. If set true (default), all contents of
the Form Section will be displayed when the form is rendered. If set to false, all contents of the Form Section will not
be displayed at render time.

In Forms Builder 3.6 and later, this property can be dynamically bound using a vm.models. value or an expression
that evaluates to true or false. The default is true.

The Visible property can be used for many reasons, e.g.:

l You have added a custom script to an HTML component and stored it as a form section. You want the ability
to drop this custom script on any page. However, if the form section cannot be hidden, there will be an empty
panel on the page.

l You have workflow logic bound to an argument or just bound variable logic on a page which makes a given
Form Section conditionally visible. This makes it possible to hide a group of controls programmatically instead
of hiding each control and being unable to hide the panel that contains them.

l You specify an argument (e.g., vm.models.showSection) in the Model property of a Checkbox control and
then use the same argument in the Visible property of a Form Section. The Form Section will be displayed
only if a user selects the check box.

Layout Enhancements

In Forms Builder 3.6 and later, the column layout options for form sections provide additional flexibility. You can
select from 1-12 columns, set up columns with different widths, and you can merge form sections using the 'Merge
with Next' and 'Merge with Previous' properties.

Flexible Column Layout

The form section below has 4 fields with different widths. The first 2 fields take up 2 columns each; the other 2 fields
take up 4 columns each. The maximum width is 12 columns. The left pointing arrows above the controls indicate
that the width of each field can be decreased, but not increased.

Forms Builder Version 3.6.1 348 Help Guide

After reducing the width of the Note field, right pointing arrows appear above the fields indicating that there is space
available to increase the width of any field.

Merged Form Sections

To render form sections without the horizontal rule that divides form sections by default, you can use the "Merge
with Next" and "Merge with Previous" properties. These properties must be paired, i.e., when "Merge with Next" is
selected for a form section, the next form section must have "Merge with Previous".

The image below shows how two form section are rendered when the first form section has the "Merge with Next"
property and the following form section has the "Merge with Previous" property. Note that there is no visible sec-
tion divider.

Reusable Form Sections

Forms Builder provides ability to create and save form sections as independent reusable units. Once saved, form sec-
tions are accessible from the Form Sections tab in Form Designer and can be dropped on to other forms. A form sec-
tion in a form is saved with all of the included form properties as well as any applicable properties that exist for the
form section itself.

Create and Save a Form Section

1. In Form Designer, click New to activate the Layout pane.

— OR —

Forms Builder Version 3.6.1 349 Help Guide

Click the vertical Forms tab to the left of the Field Properties area and select a form. Continue with step 4.

2. Select a Column layout (1, 2, or 3 columns) and click to add a section divider.

In Forms Builder 3.6 and later, the Column layout options include 1-12 columns and the Merge With Next /
Merge With Previous properties.

3. From the Fields panel, drag a Field into the Layout pane, and/or select a Component from the Components
panel and drop it into the Layout pane. Specify any applicable values in the Property Settings pane.

Repeat this step as necessary to assemble the desired form section in the Layout pane.

4. Select the section divider in the Layout pane and specify the Form Section Property Settings.

l Class is an optional CSS class (or space separated classes) added to the top level of the control. CSS
specific to the control can be applied. The class must be defined in a Renderer CSS file. For more inform-
ation, see Custom Styles.

l Description is an optional field to describe the form section.

l Id is required. It can be any valid JavaScript id attribute value. (Must start with a letter followed by 0 to
9, a to z, dash, or underscore characters).

o Using a globally unique identifier (GUID) from GuidGen or GuidGenerator prefixed by at least
one letter prevents a clash with any other id.

o Id should contain only a to z (uppercase or lowercase), 0 to 9, dash, or underscore. It should not
have spaces.

o Binding is not supported for this property.

l Merge with Next and Merge with Previous enable you to merge sections on a form. For more
information, see Merged Form Sections above.

l Title is displayed at the top of the form section when the form is rendered.

l Visible makes the form section visible or hidden. This property can be dynamically bound using a vm.-
models. value or an expression that evaluates to true or false.

Forms Builder validates the Forms Section properties. Invalid properties will be marked with an icon (). The
Layout pane will display a red border on the affected Form Section. If you try to save a Form Section with
errors, an error message will be displayed.

5. Click the Save Section button. The section divider in the Layout pane now indicates the Title of the form sec-
tion and, in parentheses, the Form Section Name.

6. In the Unsaved Changes dialog specify the Form Section Name (required), Title (optional), and Descrip-
tion (optional). Click Save to continue.

https://www.guidgen.com/
https://guidgenerator.com/

Forms Builder Version 3.6.1 350 Help Guide

The Form Section tab indicates the Form Section Name after the form section is saved.

All applicable data for the form section is persisted to the database.

Edit a Form Section

1. In Form Designer, click New to activate the Layout pane.

2. On the Form Sections tab, select a form section, and drop it into the Layout pane.

3. Edit the form section by adding or removing Fields and/or Components and/or editing the Form Section Prop-
erty Settings.

4. Select the section divider for the form section.

Click Save Section to retain the Forms Section Name, Title, and Description.

— OR —

Click Save Section As to change the Forms Section Name, Title, and Description.

Note: When a form section is edited as described above after the form section has already been used in one or
more forms, the edits arenot propagated to the form instances where the form section is used.

Forms Builder Version 3.6.1 351 Help Guide

Add a Form Section to a Form

1. In Form Designer, create a new form.

a. Click New to activate the Layout pane.

b. Select a Column layout (1, 2, or 3 columns) and click .

c. From the Fields panel, drag a Field into the Layout pane, and/or select a Component from the Com-
ponents panel and drop it into the Layout pane. Specify any applicable values in the Property Set-
tings pane.

d. Repeat this step as necessary to assemble the desired form in the Layout pane.

— OR —

a. Click the vertical Forms tab to the left of the Field Properties area and select a form.

2. Select the Form Sections tab and drag a form section to the Layout pane.

Edit a Form Section in a Form

1. Click the vertical Forms tab to the left of the Field Properties area and select a form that contains a form sec-
tion.

2. Edit the form section.

3. Select the section divider of the form section and click Save Section or Save Form Section As.

Note:

The following dialog is displayed.

l If you click Save instead of Save Section or Save Form Section As after editing a form section within a
form.

l If you click to navigate back to the home page.

Forms Builder Version 3.6.1 352 Help Guide

When this dialog is displayed, you have the following options:

l Click Cancel and then click Save Section to save the changes to the form section. In the Unsaved
Changes dialog specify the Form Section Name (required), Title (optional), and Description
(optional). Click Save to continue. The revised form section is saved to the database and listed on the
Form Sections tab.

l Click Continue to save the form. In the Unsaved Changes dialog, specify the Form Name (required),
Title (optional), and Description (optional). Click Save to continue.

Notice that the section divider in the Layout pane no longer indicates the Form Section Name after the
form is saved.

Forms Builder Version 3.6.1 353 Help Guide

Note: Changes made to a form section in a form are not saved to the form section in the database.
The form section in the database will retain the original form section fields.

Delete a Form Section

On the Form Sections tab, select a form section, and click Delete Section. The form section is removed from the
Form Sections tab.

If the deleted form section is used in a form, the Form Section Name is removed from the section divider, but the
fields of the form section remain on the form.

Delete a Form Section from a Form

In the Form, select a form section, and click the icon below the title bar of the Form Section.

Forms Builder Version 3.6.1 354 Help Guide

School Defined Fields
Your institution may need data that the generic version of CampusNexus Student has not provided. If so, you can
define fields in CampusNexus Student, also known as School Defined Fields (SDFs) that are unique to your oper-
ations. Once the SDFs have been created in CampusNexus Student, you can use Forms Builder and create forms
that contain these fields.

1. Create the SDFs in CampusNexus Student under Setup > School Defined Fields > Student. SDFs con-
figured in CampusNexus Student are stored in the SyUserDict table.

Note: Forms Builder supports SDFs only for the StudentEntity.

After creating new SDFs, restart the CampusNexus Student app service and then restart the Form
Designer app service to regenerate the metadata to include the new SDFs.

2. In Form Designer, select New to enable the Layout pane.

3. In the Entities list on the Fields tab, select the Student entity. The SDFs that are configured in the SyUserDict
table appear within the Student entity when the Student entity is selected. The SDF properties are marked
with a icon and display the text "Custom Property" when you hover over a field.

4. Select the SDF you want to use in your form and drag it into the Layout pane.

5. Select the SDF in the Layout pane and edit the values in the Property Settings pane.

Notes:

l The binding for SDFs in the Model property uses the following format (see Text Box and Date Picker
examples below):

vm.models.studentEntity.CustomProperties['propertyName']

l The binding for multiselect SDFs in the Model property uses the following format:

vm.models.studentEntity.MultiValueCustomProperties['Multi 83']

Forms Builder Version 3.6.1 355 Help Guide

Forms Builder Version 3.6.1 356 Help Guide

6. Save the form.

7. Navigate to Sequence Designer, add the form to a sequence, and click Save.

8. In Workflow Composer, open and edit the workflow. For more information, see Open the Workflow for a
Sequence.

Forms Builder Version 3.6.1 357 Help Guide

Note: To persist the data entered for an SDF in the rendered sequence, add a SaveEntity<StudentEntity>
activity to the workflow.

https://help.campusmanagement.com/WF/Content/Workflow/SaveEntity.htm

Forms Builder Version 3.6.1 358 Help Guide

Control Property Settings
When a field or component is dragged to the Layout pane, the Property Settings pane is refreshed and the Control
Property Settings are displayed.

The OData service exposes the metadata of fields as defined in the Entity Data Model (EDM) for CampusNexus. See
OData Queries.

The Control Property Settings include the control type, which is read-only. Other properties can be modified. The list
of editable properties (marked with) varies depending on the control type.

Binding Properties

If you want to use a different control type for a property from the CampusNexus model than what the default is,
you can create a custom component, bind it to the field using theModel property, and save the component. For
more information, see Components.

When binding controls, String and Integer properties such as Tooltip and MinValue require the Model value to be
enclosed in double curly braces, for example, {{vm.models.myTooltip}} for Tooltip or {{vm.-
models.myMinValue}} for a Text Box of type Number. Boolean properties do not need the curly braces, for
example, vm.models.myRequired.

You can also bind fields using dynamic AngularJS expressions in the property settings (see https://-
docs.angularjs.org/guide/expression). For example, you could define the Visible property on the Citizenship Status
field to be visible only when the following expression evaluates to true:

vm.models.studentEntity.CountryId==7

Where the CountryId value 7 represents United States, and Country is a field in the same sequence.

With this expression, if the user selects a country other than the United States (i.e., country==7), the Citizenship
Status field will not be displayed on the form.

Notation for Array Variables

Array variables in the Property Settings pane of Form Designer use AngularJS notation with "square brackets" [].

Example:

Array variables in Workflow Composer require VB.NET notation with "rounded brackets" ().

Example:

https://docs.angularjs.org/guide/expression
https://docs.angularjs.org/guide/expression

Forms Builder Version 3.6.1 359 Help Guide

AngularJS Expression Sandbox Security

When you use AngularJS expressions in the Property Settings pane of Forms Builder, be careful not to use arbitrary
JavaScript in HTML template expressions. Use the expression sandbox only for data binding.

l If you dynamically generate AngularJS templates or expressions from user-provided content, you are at risk
of cross-site scripting (XSS) attacks.

l If you do not generate your AngularJS templates or expressions from user-provided content, you are not at
risk of these attacks.

Database Tables for Property Settings

The control types and their property settings are persisted as part of the JSON string currently stored when saving
the form. The following database tables hold the control types and their properties:

l The ControlTemplate table stores the available control types and has one row per control type instance.

l The ControlProperty table stores all of the property settings that can have values specified for each control
type. This table has one row per instance of each property setting.

Update of Properties

Prior to Forms Builder 3.4, when properties were added to controls (such as the Visible property added in Forms
Builder 3.3), you had to drag the updated control into the Layout pane, fill out the properties again, and remove the
original control from the Layout pane.

In Forms Builder 3.4 and later, when properties are added to the ControlProperty table, the properties are auto-
matically updated in the Property Settings pane. Default values are assigned to any new properties. You no longer
need to replace the original control in the Layout pane.

Note: To save new properties in JSON/HTML format in the database, you still need to re-save the form.

Editable Properties

The following table lists common editable properties for database fields and components. For more details about
component properties, refer to the Components topics.

Note: For Boolean type properties, the literal values true and false must be entered in lowercase. Uppercase
TRUE/FALSE will always evaluate to false.

Property Description Required Default Data Type

Allow Mul-
tiple Files

File Upload component: Specify whether multiple files can be
uploaded.

false Boolean

Class Optional CSS class specific to the control. The class must be
defined in a Renderer CSS file. For more information, see Cus-
tom Styles.

No

Editable Properties

Forms Builder Version 3.6.1 360 Help Guide

Property Description Required Default Data Type

Disabled Specify whether the field is disabled on the rendered form. false Boolean

Extensions
Allowed

File Upload component: Specify the allowed extensions of files
to be uploaded.

doc,
docx, gif,
jpg, pdf,
png

String

Format Display format for theMasked Text Box or Date Picker control
types.

Masked Text Box: For more information about the formats, see
Kendo UI: MaskedTextBox.

Date Picker: For more information about date formats, see Date
Formats.

See EDM
Attribute:
Format.

Grid
Columns

Specify the grid columns displayed in Single-select Search con-
trol types. The "field" valuemust match the fields returned by the
LookupQuery.

[{"field":
"Name",
"title":
"Name"}
]

Hyperlink
Target

Specify where to open the link. Possible values are _self
(default), _blank, _parent, and _top.

_self

Id Id is a globally unique identifier (GUID) for the field instance
within the form in which it is included. It is automatically created
by Forms Builder.

Yes String

Label Specify the label assigned to the field on the rendered form. String

Link Text Specify the link text for a Hyperlink control. String

Lookup Dis-
play Mem-
ber

Specify the name of the column that is displayed in the control. Yes Name String

Lookup
Query

Specify the OData query associated with the property when a list
control such as a drop-down is used to display the property.

LookupQueries for CampusNexus CRMMetadata

For any drop-down or search controls that will be populated via a
lookup query, the CampusNexus CRM user needs to enter val-
ues for the Lookup Display Member and Lookup Sort Mem-
ber attributes. The Lookup Query and Lookup Value Member
property settings should have default values (if applicable for the
selected property) as these are currently specified in the
metadata.

Yes null OData
Query

http://docs.telerik.com/kendo-ui/controls/editors/maskedtextbox/overview

Forms Builder Version 3.6.1 361 Help Guide

Property Description Required Default Data Type

Lookup
Sort Mem-
ber

Specify the name of the database column that is to be used to
sort the values returned by the lookup.

Yes Name String

Lookup
ValueMem-
ber

Specify the name of the column in the query that is used as the
value of a selection.

Yes Id String

Max Size
Allowed

File Upload component: Specify themaximum file size (in bytes)
for files to be uploaded. The default is 0 (unlimited).

Note: If this control is bound to amodel, depending on the
product, theMax Size allowedmay be limited by the service
used to persist the attachment.

0

Max (for
number
type)

Specify themaximum value for an Input Type of number. The
default is 0 (unlimited).

String

Max Length Specify themaximum length of a string property. field spe-
cific

String

Min (for
number
type)

Specify theminimum value for an Input Type of number. The
default is 0 (unlimited).

String

Min Length Specify theminimum length of a string property. 1 String

Model Specify themodel of the component in the Entity DataModel
(EDM) for CampusNexus for a bound control (e.g., vm.-
models.<entityname>.<propertyname>) or any unbound control
(e.g., vm.models.CustomTextbox).

In Forms Builder 3.3 and later, all Model bindings defined or
used in a workflow must be arguments (not variables). Any
sequences that are bound to variables will no longer work.

String

Option
Label

Specify the label for the options in a Drop-Down List control. <Select> Enum

Page Size Specify the size of the page when paging is true. 100 Int32

Placeholder Specify the ghost prompt text in an input box before anything is
typed.

String

Product
Name

Specify "Student" or "CRM" depending on whether Cam-
pusNexus Student or CampusNexus CRM is used with Forms
Builder.

Yes Student String

Read-only Specify whether a control is read-only. false Boolean

Forms Builder Version 3.6.1 362 Help Guide

Property Description Required Default Data Type

Required Specify whether input for a field or component is required on the
rendered form.

false Boolean

Required
Message

Specify the validationmessage displayed on the rendered form. String

Tooltip Specify the text to be displayed when the cursor is placed over
the component.

String

Type Applicable only to the Text Box control. Specify the input type for
the component.

The directive for this property produces a standard <input> tag.
The default for the Type value is text. Other Type values that
can be selected from a drop-down list in the Value field are: pass-
word, email, number, url.

Enum

Url Specify the URL for a Hyperlink control. String

Visible Specify whether a field or component is visible on the rendered
form.

Likemost properties, this property can be also bound to a vari-
able in a workflow or another control’s value.

true Boolean

Value Description Example

d Short date 6/15/2009

D Long date Monday, June 15, 2009

F Full date/time Monday, June 15, 2009 1:45:30 PM

G General date/time 6/15/2009 1:45:30 PM

M Month/day June 15

u Universal sortable date/time 2009-06-15 20:45:30Z

Y Year/month June, 2009

t Time 13:45:30

n0 Number (0 precision) 123

n1 Number (1 precision) 123.4

n2 Number (2 precision) 123.45

c0 Currency (0 precision) $123

c1 Currency (2 precision) $123.45

EDM Attribute: Format

Forms Builder Version 3.6.1 363 Help Guide

Value Description Example

p0 Percent (0 precision) 100%

p2 Percent (2 precision) 100.00%

Forms Builder Version 3.6.1 364 Help Guide

Multiselect for Single Property Collections
There are several instances within the CampusNexus Student and CampusNexus CRM models where multiple selec-
tions of a single property are needed. For example, when specifying student demographic data, a student’s ethnicity
may require selecting multiple ethnicity values. Another example is a Prospect Inquiry where a user can select mul-
tiple programs.

Currently, the ability to achieve this capability by dragging the applicable properties from the data model into the
Layout pane is not supported. Instead, the Multiselect control from the Components tab in Form Designer must be
used to achieve this capability.

Ethnicities List

1. In Form Designer, click New or access a previously created form that requires an Ethnicity List field.

2. Click theComponents tab and drag theMultiselect control to the Layout pane.

3. In theControl Property Settings pane for the Multiselect, specify the following values:

l Label = Ethnicity List
l Lookup Display Member = Name
l Lookup Query = Ethnicities?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name
l Lookup Sort Member = Name
l Lookup Value Member = Id
l Model = vm.models.prospectInquiryEntity.Student.EthnicitiesList (Use this Model value if you are

saving data for a prospect.)
— OR —
Model = vm.models.studentEntity.EthnicitiesList (Use this Model value if you are saving data for a
student.)

Accept the defaults for the remaining values.

Forms Builder Version 3.6.1 365 Help Guide

4. Access the Sequence List and view the rendered form.

5. Select the control labeled Ethnicity List. Verify that the Ethnicity values from your database are listed, that
multiple values can be selected, and that the selections are saved to the appropriate table

Forms Builder Version 3.6.1 366 Help Guide

(AmElectronicLeadsAmRace for the prospectInquiryEntity or SyStudentAmRace for the studentEntity).

Programs List

1. In Form Designer, click New or access a previously created form that requires a Programs List field.

2. Click theComponents tab and drag theMultiselect control to the Layout pane.

3. In theControl Property Settings pane for the Multiselect, specify the following values:

l Label = My Programs
l Lookup Display Member = Name
l Lookup Query = Programs?$select=Code, Name, Id&$filter=IsActive eq true
l Lookup Sort Member = Name
l Lookup Value Member = Id
l Model = vm.models.prospectInquiryEntity.Student.ProgramList (Use this Model value if you are

saving data for a prospect.)
— OR —
Model = vm.models.studentEntity.ProgramsList (Use this Model value if you are saving data for a stu-
dent.)

Accept the defaults for the remaining values.

Forms Builder Version 3.6.1 367 Help Guide

4. Access the Sequence List and view the rendered form.

5. Select the control labeled My Programs. Verify that the Program values from your database are listed, that
multiple values can be selected, and that the selections are saved to the appropriate table

Forms Builder Version 3.6.1 368 Help Guide

(AmProspectProgram for the prospectInquiryEntity or SyStudent (column AdProgramID) for the stu-
dentEntity).

Forms Builder Version 3.6.1 369 Help Guide

Custom Styles
Forms Builder enables you to customize the styling of forms and form elements using cascading style sheets (CSS).
Style sheets determine the look and feel of your forms including logos, controls, backgrounds, font, etc.

Note: It is not the purpose of this topic to teach you CSS. Many references can be found on the web on how to cre-
ate style sheets. One good example is at w3schools.com/css. There are also free CSS editors with extra features,
among them Microsoft Visual Studio Community Edition, but any text editor can be used as well.

There are 4 ways to style sequences. Non-Azure customers can use all four methods. Azure customers can only use
the last two.

1. Use a theme file.

This is a CSS file added the /Content/Custom folder that is referenced in a Setting for “Custom Theme”. A
theme can then be chosen for each sequence in its properties “Theme-Custom”.

2. Apply styles globally for all sequences.

Create a CSS file and add it to /Content/Custom. Modify customerIncludes.html in the same folder
to add the link to the style sheet as shown in the file. This file will always be loaded; therefore, the CSS applies
to all sequences.

3. Add the style to an HTML component on a form.

This can be set to Visible=false so it does not reserve space on the form. The style will apply to the form it is
contained in and all remaining forms in the sequence. Once it is loaded, it will apply also if you go back in the
sequence (which is why it is best in the first form in a sequence). Use the style tags like this:

<style>
 Styles here
</style>

4. Use Custom Content

Upload a file and refer to it with a simple directive tag in an HTML component. See Custom Content for
details on how to reference the uploaded file.

Forms Builder Preserves Custom Files

Non-Azure customers

Prior to Forms Builder 3.3, custom styles were added to the index.html file. These styles were overwritten when
Forms Builder was updated and had to be backed up and restored.

In Forms Builder 3.3, a folder was added to Renderer that will not be modified on updates. This folder is /Con-
tent/Custom/ (from the root of the Renderer website).

http://www.w3schools.com/css/

Forms Builder Version 3.6.1 370 Help Guide

Initially the folder contains only one file named CustomerIncludes.html. Do not delete this file. If it is missing,
create an empty file by this name.

This folder is also the home for a custom theme file created for a sequence and named in the “Custom Theme” prop-
erty for that sequence. A theme file provides the ability to specify a theme on a sequence by sequence basis.

If custom styles or scripts are required and they are global in nature, that is, they need to be applied to every
sequence, then instead of being put in a theme file, they can be put in files and added to this folder.

Edit the file CustomerIncludes.html. Use the example of either the script reference or the style reference to add
the custom script or style. The commented examples are:

<!--
Examples:
<script src="/Content/Custom/MyScripts.js"></script> -- Use this for a script file.

<link href="/Content/Custom/MyStyles.css" rel="stylesheet" /> -- Use this for a style sheet.
-->

The file CustomerIncludes.html is always loaded; therefore, any files referenced in this file will also be loaded.

Since this file will not be modified on an update, nothing will need to be done to preserve customizations during an
update.

Create a Style for a Label Control

Each control has a Class property. When you fill in this property with your own class name (or multiple class names),
your class (or classes) will be added to a top level HTML <div> element for a control. The class name you specify will
need to be defined in a custom style sheet file in the /Content/Custom/ on the Renderer website.

Unlike most other controls in Forms Builder, the Label control does not use AngularJS directives to define custom
HTML tags which are then translated to "regular" HTML/CSS/JS when they are rendered in a browser.

1. In the Property Settings on Form Designer, fill in the class name for a Label control with the name my-cus-
tom-style. (The convention is lowercase with hyphenation ("snake case"), but any unique name would
work).

When a Label is rendered, it will now look like the following:

<div class="form-group my-custom-style cmc-div-label">
This is my label
</div>

2. To apply a style to this class, create a style sheet file (.css) which contains your style.

3. Place the custom style sheet file in the /Content/Custom/ on the Renderer website and add a link to it in
the CustomerIncludes.html file.

4. Let’s say we want to make this label red with a light blue background and force it to wrap if it is too long.

Forms Builder Version 3.6.1 371 Help Guide

Since you want to style the within the <div>, the following contents of your .css file will do this.
The class at the top level (see step 1) has a 2nd selector which tells it to drill down to the span element and
apply the style in the braces to it.

.my-custom-style span {
white-space: normal;
display: inline-block;
background-color: lightblue;
color: red;
}

For control types that use directives, e.g., input (Text Box), the custom style must be defined similar to the
following example to override the default style. The !important rule forces the override of the default style.

.my-custom-style input {
white-space: normal;
display: inline-block;
background-color:lightblue !important;
color: red !important;
}

Note: This style only affects the Text Box input control itself not the Label above control.

5. On other controls (look at the HTML generated in the browser), you may have a different 2nd selector like
label.

6. Notice that there is another class above: cmc-div-label. This fixed class is in all labels. If you create a style
for it, all labels on your site will have this style.

.cmc-div-label span {
white-space: normal;
display: inline-block;
background-color: lightblue;
color: red;
}

7. Similarly, form-group is in all controls, so a style (if appropriate) can be applied to all controls.

Note: One caveat is that multiple definitions for the same element have a priority scheme. The label and label-

default classes in the span are a default Bootstrap style and produce white text with a gray background. Your
style may not override a higher priority style. If your style doesn’t seem to take effect, most browsers, including IE
and Chrome, have a development mode where you can examine the styles being applied to each element on the
page.

Replace the Logo

http://www.w3schools.com/bootstrap/default.asp

Forms Builder Version 3.6.1 372 Help Guide

Non-Azure customers

To replace the CampusNexus logo at the top of the forms:

1. Create a style sheet with your logo.

2. Add the “.navbar-brand” style to your css file.

.navbar-brand {
background: url('images/CampusNexus-SVG.svg') center / contain no-repeat;
padding: 0;
width: 200px;
margin-left: 5px;
}

3. Modify the “.navbar-brand” style by replacing the URL with your image. Specify or remove padding and mar-
gins values as needed.

.navbar-brand {
background: url('images/YourLogo.png') center / contain no-repeat;
}

4. Place the image file in the /Content/Custom/images folder on the Renderer website.

5. Add a link to the image in the CustomerIncludes.html file.

All customers

If you do not have access to the web site file system, the Custom Content feature can be used. Follow the first 3
steps above, then upload the new style sheet. See Custom Content for details how to reference the uploaded style
sheet.

Video: Combine Form Sections on a Form

The following remains as an example of custom styling techniques, however, FormsBuilder 3.6, this particular style
can be accomplished with the new Merge with Next and Merge with Previous properties on two successive Form Sec-
tions. See Form Sections for information.

This short video demonstrates how you can modify form sections using a custom Class name. It includes the fol-
lowing steps:

l Modifying and capturing a style using browser developer tools

l Creating a custom css file using form section Ids as css selectors

l Two ways of linking the custom css to a form:

o Associating the css with a custom theme in Forms Builder Settings

o Linking the custom css to the CustomerIncludes.html file

Forms Builder Version 3.6.1 373 Help Guide

o Not shown in video, a 3rd way is to add an HTML component to the page with <style>…..</style> tags
and set property Visible=false.

Click here to view the video (wmv file; 4:30 min.).

Forms Builder Version 3.6.1 374 Help Guide

Date Formats
In Forms Builder the input format for date values is controlled by the settings on the Format property. The text
typed in a date field on a rendered form is parsed and displayed based on the specified format. The format is case
sensitive: d for day,M for month, y for year, for example, MM/dd/yyyy or dd-MM-yy. TheDisable Input Text prop-
erty must be set to false to enable text input on a field.

Note: If you are entering dates elsewhere in the product that are not displayed to the user such as dates in prop-
erties, queries or expressions, the preferred format is the ISO 8601 format. This format is universal and is always
parsed correctly.

Time:

2016-03-09T10:20

2016-09-09T22:23

2016-09-10T22:23-05:00 – with time zone offset

2016-09-10T22:23:00Z - UTC time

Date:

2016-03-09

2017-04 – year and month only

Example 1: Admissions Deposit - Received Date Field

The Property Settings for the Received Date field specify the Format asMM/dd/yyyy. The Disable Input Text prop-
erty is set to false (default: true).

Control Property Settings

Rendered Component

After text input, the rendered form displays the Received Date as follows:

https://en.wikipedia.org/wiki/ISO_8601

Forms Builder Version 3.6.1 375 Help Guide

Example 2: Date Picker Component

The Property Settings for the Date Picker were edited to specify the Format as dd-MM-yy. The Disable Input Text
property is set to false by default.

Control Property Settings

Rendered Component

 After selecting a date, the rendered form displays the date as follows:

Regardless of how the date format is defined in Forms Builder, any date values stored in the database use the
<DateTime> data type. Workflows also use the <DateTime> data type.

Forms Builder Version 3.6.1 376 Help Guide

Date & Time Values and Offsets
The Date Picker, Date Time Picker, and Time Picker controls have the capability to output an ISO 8601 string value
which is converted to a DateTime or DateTimeOffset object in a workflow (depending on the type of the workflow
argument).

Assume one is using a control on March 8 at 10AM in Florida during Eastern Standard Time:

l Date Picker

The Date Picker control should have Ignore Time set to true and will only output the date portion of the ISO
8601 string.

vm.models output example: “2018-03-08”

DateTime object will show Mar 8, 2018 at midnight, no offset.

DateTimeOffset, same and likewise no offset.

l Date Time Picker

vm.models output example: “2018-03-08T10:00:00.000-05:00”

DateTime object will show Mar 8, 2018 10 AM, offset is lost.

DateTimeOffset same but will have Offset property set to 5 hours.

l Time Picker

vm.models output example “2018-03-08T10:00:00.000-05:00”

DateTime object will show same as Date Time Picker, but typically you will ignore the date and use only a
formatted String as the time.

DateTimeOffset same but will have Offset property set to 5 hours.

When binding vm.models values for these controls directly to an entity argument property, if the associated data-
base Datetime column is not nullable, the entity data type is DateTime instead of Nullable<DateTime>. This means
a direct model map to an entity argument property must have Required set to true so that client side validation will
prevent submittal of a value if it is null (no value). Failure to do so would cause an error in the workflow and a sub-
sequent abort of the workflow.

If the entity property is Nullable<DateTime>, you still might not want to store a null value in certain circumstances
(since it might be invalid for the situation). In that case you could mark it required in the client, or conditionally in the
workflow, check your argument with the property myDate.HasValue and create a descriptive server validation error
if it is false.

https://en.wikipedia.org/wiki/ISO_8601

Forms Builder Version 3.6.1 377 Help Guide

Known Limitations for DateTime Localization

1. DateTime objects are used in two different ways.

a. The first way is where the time in any time zone is relative to a reference time zone. Midnight in UTC
(Greenwich Mean Time) is 7 PM on the previous day in Florida (except when EDT changes it to 8 PM).
They represent the same moment in time and thus 2018-03-09T00:00:00ZZ, 2018-03-
08T19:00:00.000-05:00 and 2018-03-08T16:00:00.000-08:00 are the same moment in time, even
though they are different dates and times.

b. The second is where the time needs to be fixed for a date. A birth date, marriage date, scheduled date
and time, a historical date and time might need to be fixed to the time zone they were created in
because one needs to know the date and time in that time zone even if you are in another time zone.
You do not want a birth date to all of a sudden change to a different date in your local time zone,
because it is a legal date on a document and the birth occurred in a specific time zone. The Date Picker
object has an Ignore Time property which should always be set to true to mitigate this problem.

2. When using a DateTime object in a workflow, there is a known limitation for localization. If the server is in a dif-
ferent time zone, the offset and time both get shifted to the server time zone when the client Date Time
Picker value is sent to the server.

Example: Date input is 2018-03-08T10:00:00.000-05:00. This is 10 AM in EST. If the server is in PST, it gets
translated to 2018-03-08T07:00:00.000-08:00 which is 7 AM in PST. This is the same moment in time. If it is
bound to a DateTime object in a workflow, the offset is dropped, so it will be stored in the database as 7 AM.
Now if it is used in a form, it is brought back from the database as 7AM in the workflow and a DateTime
object is created from that. Since the server (workflow is running on the server) is in PST, when sent to the cli-
ent, it will have an offset added to it to recreate the original server string 2018-03-08T07:00:00.000-08:00. If
it is bound to a Date Time Control in the client, because the client is in EST, it will be translated back to 10 AM
in EST. This of course is desirable. Of course, if the client is in some other time zone, it will appear as the local
time in their time zone.

All good so far. However, there are several problems. One is that when the object is used in a workflow or any
other server side process, it is not known where the object was created (where the browser was located), so if
the date and time are the 2nd type of DateTime object detailed above, you have a problem. And if the date
time is used on a different server that is not in the same time zone as the server that stored it, you now can-
not get back the original date and time in any time zone. In Azure environments you may not only not know
where the server is located, it may change the next time you use the form.

DateTimeOffset is the way to save a value for the case where the time zone (offset) is important; however,
currently no entities support DateTimeOffset. A DateTimeOffset preserves the time zone offset, and when
stored in a DateTimeOffset column in a database, and a server uses the return value, it is weighted by the
time zone offset it is in.

l One way to store a DateTimeOffset argument value is to convert it to a String and store it in a String
column, and conversely parse it as a DateTimeOffset on its return with DateTimeOffset.Parse (using an

Forms Builder Version 3.6.1 378 Help Guide

Invoke activity) and then assign it to an argument. This technique can recreate the original
DateTimeOffset on the same server.

l A second alternative is to use the properties of the DateTimeOffset object, “DateTime” and “Offset” to
store these in two separate columns. Offset as a TimeSpan would have to be converted to a String
(ToString()), but DateTime could be stored either in a database DateTime column or String column.
When these return from the database, you would have to use the information to reverse the process
to create a new DateTimeOffset object. Use Parse on each (if both are a String) and then use "new
DateTimeOffset(parsedDateTime, parsedTimespan)" with an Invoke activity to recreate the argument
and model value sent back to the control. This technique is only useful if the server now happens to be
in a different time zone than the original server because the original server DateTimeOffset can be
recreated.

l And a third alternative is to bind the component value to a String and simply treat it as a String always
(making it not very useful in a workflow if it needs to be compared to other dates and times. It would
have to be converted to a DateTime first). However, of the 3 alternatives, this is the only way to pre-
serve the original time zone offset because the string will not be altered anywhere on the path from
the client to the server to the database.

3. At this time there is no resolution for PDF generation when the server is in a different time zone than the cli-
ent. That is because PDF generation must be done on the server in a simulated browser environment. The
simulated browser picks up the time locale of the server, and thus translates dates to local time (the server
time). This makes a PDF where a Date Time Picker has been used to select the time have a different time than
the client had. Since this is under the control of 3rd party software, there may be no fix possible. This is being
looked into.

Forms Builder Version 3.6.1 379 Help Guide

Delete Forms
You can delete a form in Form Designer. When the delete option is selected, Forms Builder checks if the form is
included in any sequences. If the form is included in at least one sequence, a validation message is displayed, and
the delete process is not allowed to continue.

Note: Forms can easily be modified to fit any new requirements. It may not be necessary to delete them. Just keep
in mind that any additional entities or properties that were not included in the initial sequence must be manually
added to workflow definition. For more information, see Update a Form After Creation of a Sequence.

1. In Form Designer, select the form you want to delete.

2. Click Delete Form in the action bar. The following message is displayed: "Are you sure you want to delete
<form name>?"

Click OK.

3. If the form is not included in a sequence, the form is deleted. A confirmation message is displayed.

4. If the form is included in one or more sequences, a validation error is displayed.

Forms Builder Version 3.6.1 380 Help Guide

Validation on Form Save

To alert users about invalid property settings before a form is saved, Form Designer displays error () and warning (
) icons along with tooltips for invalid property settings. The indeterminate () icon indicates that a property’s

validity could not be determined.

When a form with incorrect settings is saved, the errors/warnings are retained and displayed upon opening the form
so that you can make the necessary corrections. However, not all items are validated such as formats and any prop-
erties in popups (e.g., Grid Columns).

If you try to save a form with errors, the font title above the Layout pane will turn red.

Boolean Properties

l All tooltips for Boolean properties indicate that the values "true" and "false" must be all lowercase.

l On many of these properties, a binding starting with "vm.models." is allowed.

l Where a binding is allowed, Forms Builder allows the input of AngularJS expressions.

For example, you can change default value (true) of the Visible property on the SSN field to a condition so
that the field is visible only if the condition evaluates to true:

vm.models.StudentEntity.CountryId==7

(Where the CountryId 7 represents United States, and Country is a field in the same form sequence.)

Model Property

l All tooltips for the Model property include a reminder that the model argument needs to be defined in the
workflow for custom controls.

l Forms Builder validates that the Model property is populated and starts with "vm.models.", for example vm.-
models.myArgument

l If the syntax for the Model value is incorrect, an error icon () appears next to the Model property, and an
error message is displayed:

Forms Builder Version 3.6.1 381 Help Guide

l If the Model value is required and is incorrect or missing, an error icon () appears next to the Model prop-
erty, and the following error message is displayed when the form is saved.

If you ignore the error and save the form, the next time the form is opened, a message similar to the fol-
lowing appears:

l If the Model value is optional and is incorrect or missing, a warning icon () appears next to the Model prop-
erty and a warning message is displayed.

If you ignore the warning and save the form, the next time the form is opened, a message similar to the fol-
lowing appears:

Forms Builder Version 3.6.1 382 Help Guide

Validation Errors for School Defined Fields

In forms created with Forms Builder 3.2 or earlier, School Defined Fields that contain spaces in the field name (e.g.,
"Date of Coverage") will show validation errors for the Id property. These errors can be ignored since they do not
impact the functionality of the forms (invalid JavaScript).

To clear the errors, simply:

l Re-drag the school defined field into Layout pane.

— OR —

l In the Property Settings pane, delete the spaces on the Id value (e.g., "DateofCoverage").

Validation Error for Id Property on File Upload

If a File Upload control was added in an earlier version of Forms Builder, a warning will be displayed on the Id prop-
erty because the Id must start with a letter. To clear the warning, add a letter to the beginning of the Id value.

HTML Syntax Checking

Forms Builder will perform as much HTML syntax checking as possible. Correct syntax errors or warnings as indic-
ated by the tooltips.

Forms Builder Version 3.6.1 383 Help Guide

Indeterminate Flags

Form Designer 3.5 or later displays icons along with tooltips for indeterminate property settings. OData query
properties such as Lookup Display Member, Lookup Query, Lookup Sort Member, and Lookup Value Member will
display this icon if:

l There is no main select statement.

l An expand, filter, or orderby is found before a select statement.

l A property with dot notation is present, and each part is somewhere in the query so it did not produce a warn-
ing.

Queries should always be tested externally in browsers (we recommend Chrome or Edge) to determine if they actu-
ally will produce results (with bound Model values, if any, substituted with real values).

Forms Builder Version 3.6.1 384 Help Guide

Copy and Paste Controls
You can copy and paste individual controls in the Layout pane of Form Designer. You can copy and paste a control
from one form to another form or from one form section to another form section in the same form. You can copy
and paste custom controls (Components) and controls that originate from the Fields tab.

1. Open a form and select a control in the Layout pane. The icon appears above the Layout pane.

2. Click the icon. The selected control is copied to the clipboard.

If you select a different control and click again, only the latest item copied will be saved to the clipboard.

3. Open another form or start a new form and click a form section. The icon appears above the Layout pane.

4. Click the icon. The control is pasted into the form section.

Forms Builder Version 3.6.1 385 Help Guide

The pasted control is assigned a unique Id value. All other properties are carried over from the copied control.

Limitations

l You can copy only one control at a time. If you need to copy multiple controls, you have the option to create,
save, and reuse Form Sections.

l You must stay within Form Designer to copy and paste a control. If you browse back to the Designer home
page, the in-memory copy is lost.

l You cannot copy a control across browser sessions or browser tabs.

Forms Builder Version 3.6.1 386 Help Guide

Sequence Designer
The Sequence Designer workspace is displayed when you select the Sequence Designer tile in the home page. This
workspace enables you to create and edit form sequences.

Ele-
men-
t

Description

Click the left arrow to return to the Forms Builder home page.

Create a new sequence and clear the Layout pane. On the initial entry to the page, the Layout pane is disabled
until New Sequence is selected.

Sequence Designer UI Elements

Forms Builder Version 3.6.1 387 Help Guide

Ele-
men-
t

Description

Save a sequence. This button is enabled only if a sequence is selected.

The Unsaved Changes window appears prompting you to specify the Sequence Name, Title, Description,
and the Anonymous property. All four attributes are displayed in the Sequence List and can be used to search
or filter the listed sequences.

The Anonymous property setting determines if a user will be authenticated before accessing the sequence in
Renderer (see Renderer Authentication).

l If Anonymous is 'true', the user will not be authenticated.
l If Anonymous is 'false' (default), the user will be authenticated.

When a sequence is saved, the settings selected in the Sequence Properties pane are saved along with the set-
tings specified in the Unsaved Changes window.

The Save operation also creates an workflow definition for the sequence. The initial workflow is enabled by
default. Once a sequence is saved, all subsequent edits needed for the flow/behavior of the sequencemust be
done by editing the workflow inWorkflow Composer.

Sequence Designer performs validation on Save and displays messages if the Authentication Product or End
State Form are not selected.

In Forms Builder 3.6 and later, Sequence Designer performs additional validation checks and displays a warn-
ing or validation error.

l Sequence Designer checks theModel bindings on all forms in the sequence. A validation error indicates
duplicate that bindings are found. The validation error gives the user the option to proceed or cancel the
Save operation.

l On initial Save for any sequence containing a form with a Grid or Calendar/Scheduler component, the
following warning is displayed just prior to the Save Sequence window:

WARNING! Unable to determine type for initial argument creation for someCalendar and/or Grid com-
ponents. Youmust open workflow and update the argument type for these components after saving the
sequence.

This warning appears only for OData query or workflow initialized Grid or Calendar/Scheduler com-
ponents bound to entities that Designer cannot determine on create. If either component has Model
Data, the correct array of type SerializableDynamicObject is created and nomessage is displayed.

Forms Builder Version 3.6.1 388 Help Guide

Ele-
men-
t

Description

Save a sequence with a new name. This button is enabled only if a sequence is selected.

When the 'Save As' option is chosen, the workflow definition version that is used from the sequence being
copied will be the version that is enabled. If no version is enabled, themost recent version will be used.

The 'Save As' option provides ameans to easily create a copy of a complicated workflow definition such as the
multi-signer DocuSign functionality. The copied workflow definition can bemodified usingWorkflow Com-
poser, for example, to modify the statemachine names so they align with the forms that need to be rendered for
the sequence.

Delete a sequence. This button is enabled only if a sequence is selected. For more information, see Delete
Sequences.

Delete all persisted workflow instances of a specific sequence. This button is enabled only if a sequence is
selected. For more information, see Delete Sequence Instances.

Delete all persisted workflow instances of all sequences. For more information, see Delete All Instances.

Sequences

Use the search tool to find a saved sequence or scroll through the list. Click to filter the list. When you

select a sequence, the properties pane displays themetadata of the sequence.

Forms

Use the search tool to find a saved form or scroll through the list. Click to filter the list. Drag forms into the

Layout pane to build a sequence.

Layout (initial order)

Use the Layout pane to assemble and organize forms into a sequence. Drag forms from the Forms pane into the Layout
pane. To change the order of forms in a sequence, drag forms within the Layout pane.

Sequence Designer does not allow you to change the forms and their order once the sequence is saved. However, you
can change the order of forms and transitions between them inWorkflow Composer.

Remove a form from the Layout pane.

Sequence Properties

When you select a sequence, themetadata of the sequence are displayed in the Sequence Properties pane. Except for
the Name property, you can edit and save any sequence properties.

Ano-
nym-
ous

When a sequence is rendered, authentication is required or not required based on the Anonymous setting for
the sequence. The default is: Anonymous = false (check box is cleared, editable), i.e., by default the sequence
will be authenticated.

Forms Builder Version 3.6.1 389 Help Guide

Ele-
men-
t

Description

Auth-
entic-
ation
Prod-
uct

When Forms Builder is installed in an environment that uses both CampusNexus CRM andCampusNexus Stu-
dent as database providers, the Authentication Product field is displayed. Youmust select the Authentication
Product (CRM or Student) before saving an authenticated sequence.

If only one product database is available, the Authentication Product field is not displayed.

When the Anonymous field is selected for a sequence, authentication is not applicable and the Authentication
Product field is hidden. The default Authentication Product value in the database will be CRM if both CRM and
Student databases are available.

Auto
Logo-
ut
whe-
n
Com-
plete

Select this property if you want the user to be automatically logged out when the sequence is completed. If
selected, the logout is delayed by the number of seconds specified under Auto Logout Delay in Settings. The
valuemust be 0 or greater and there is nomax. The default is 10.

Des-
crip-
tion

Description of the sequence (optional, editable).

End
Stat-
e
For-
m

In Forms Builder 3.4 and later, the End State Formmust be selected before saving a sequence, i.e., there is no
default. In earlier versions, the Default-Confirmation form was used by default when no selection was made.

The Default-Confirmation form will be overwritten when Forms Builder is upgraded.
Copy the original form, edit the copy, and use it in your sequences. Save a backup copy of your form.

SeeWelcome and Confirmation Forms.

Forms Builder Version 3.6.1 390 Help Guide

Ele-
men-
t

Description

Foot-
er

Arbitrary HTML fragment for a footer, including scripts and styles. Observe security guidelines for active con-
tent. If not set, no space is used. Note that <HTML>, <HEAD>, <BODY> or <FORM> tags should not be put
in an HTML fragment. Normally use <DIV> tags to start and end the fragment.

Example 1

<div style="text-align:center"><p style="color:green; word-wrap:break-
word;">Campus Management Corp.
5201 Congress Ave
Boca
Raton, FL 33431</div>

Example 2

<div style="text-align:right">Page {{vm.-
models.progress}}</div>

This footer has a dynamic binding. The page numbers get updated for every page in a sequence.

Footers will appear on all forms in the sequence. They will be located below the form content and above nav-
igation buttons in bottom position.

Hea-
der

Arbitrary HTML fragment for a header, including scripts and styles. Observe security guidelines for active con-
tent. If not set, no space is used. Note that <HTML>, <HEAD>, <BODY> or <FORM> tags should not be put
in an HTML fragment. Normally use <DIV> tags to start and end the fragment.

Example

<div style="text-align:center"><p style="color:green; word-wrap:break-
word;">Florida Technology - Campus</div>

Headers will appear on all forms in the sequence. They will be located above the form content and below nav-
igation buttons in top position.

Forms Builder Version 3.6.1 391 Help Guide

Ele-
men-
t

Description

Nav
But-
ton
Pos-
ition

Sets the position of the navigation buttons (Back/Next) on the rendered page. Normal positions are part of the
layout and scroll with the page. Positions that float stay in the same position as the page is scrolled.

l Bottom Left (default)
l Top Left
l Bottom Right
l Top Right
l Top and Bottom Left
l Top and Bottom Right
l Float Bottom Left
l Float Top Left
l Float Bottom Right
l Float Top Right

The default CSS for the button(s) position is shown below. You can create a custom style with new values:

<style>
.cmc-form-navigation-buttons {

margin-top: 0;
}

.cmc-form-navigation-buttons > input {
padding-top: 9px;

}
</style>

Notes:

l When the top right position is used, error messages will hide the buttons until themessage is closed. To
change this behavior you can add the following CSS style in a non-visible HTML component on the first
page of the sequence where error messages can be shown (or globally, see 3 ways to style sequences
in Custom Styles). The defaults are shown here.

<style>
.toast-top-right{

top: 12px;
right: 12px;

}
</style>

You can change where the error message pops up by changing the values.
Example: Tomove it 50px down, change the top to 62px.

l When float positions are used, validation error messages will appear above the floating navigation but-
tons.

Forms Builder Version 3.6.1 392 Help Guide

Ele-
men-
t

Description

Role Select the role of the user who will be completing the sequence. The options are Student (default) and Staff.
The Student role is also used for CampusNexus CRMContacts. Forms Builder recognizes the current user’s
role and only allows the user to execute sequences that have amatching role, i.e., if the user is a Student, the
user will not be allowed to execute sequences that have a role of Staff.

The Student and Staff roles are configured during the installation of Forms Builder 3.5 and later in the web.-
config files of Forms Renderer and Staff STS.

The web.config file of CMCFormsRenderer_V3 provides authentication andmapping of Staff and Student roles
to products:

<section name="authenticationConfigSection" type-
e="Cmc.Nexus.FormsBuilder.Helpers.AuthenticationConfigSection, Cmc.Nex-
us.FormsBuilder" />

<!-- Mapping of realms to issuers -->
<mappings>

<!-- <mapping realmKeys="Comma separated realm URL keys or * for wildcard
match"

product="Student, CRM or * for wildcard match"
role="Student or Staff"
issuerKey="URL key of the issuer" /> -->

<mapping realmKeys="*" product="Student" role="Student" issuerKey="Student
STS"/>

<mapping realmKeys="*" product="CRM" role="Student" issuerKey="CRM STS"/>
<mapping realmKeys="*" product="*" role="Staff" issuerKey="Staff STS"/>

</mappings>

The web.config file of Staff STS uses the following key under <appSettings> to accept claims from Ren-
derer:

<add key="FormsBuilder.Renderer.WsFed" value="http://<server>:<port>/" />

If you are using Forms Builder 3.5 with CampusNexus Student 19.0 or earlier, add the Form-
sBuilder.Renderer.WsFed key manually to the web.config for the Staff STS.

Notes:

l An update script sets the value of the Role property to Student/Contact for all sequences created in
Forms Builder 3.4 and earlier.

l If a staff sequence is accessed via cloud services (Azure), youmust include a LookupUser activity with
UserType=Staff in the workflow to ensure proper authentication and authorization for the staff role.

l When the Anonymous field is selected for a sequence, the role property is not applicable and the Role
field is hidden. The default Role value in the database will be Student.

l When the Role value in an existing sequence is modified and a persisted instance of the workflow

Forms Builder Version 3.6.1 393 Help Guide

Ele-
men-
t

Description

exists, a Save/Update of the sequence is not allowed. Forms Builder displays the following error:

Seq-
uenc-
e
Iden-
tifier

Identifier for a Renderer URL (optional, editable). For more information, see Sequence Identifier.

The-
me-
Boot-
strap

Theme applied to the sequence.

l Bootstrap themes are used to style layouts, containers, and general UI elements.

l Custom themes are used to style elements specific to the institution (e.g., logos and other personalized
items).

l Kendo themes are used to style Kendo controls (e.g., buttons, check boxes).

Click the Value field and select a theme from the drop-down list. The available themes are configured in the Set-
tings workspace. For more information, see Themes.

The-
me-
Cus-
tom

The-
me-
Ken-
do

Title Title of the sequence (optional, editable).

In Forms Builder 3.5.2 and later, the 'Open Workflow' button previously used to launch the Workflow Com-
poser directly from Sequence Designer is no longer available. Users can launch Workflow Composer directly
from the machine or site on which it has been installed. For more information, see Open the Workflow for a
Sequence.

Forms Builder Version 3.6.1 394 Help Guide

Open the Workflow for a Sequence
In Forms Builder 3.5.2 and later, perform the following steps to open the workflow for a sequence:

1. Create and save a sequence in Sequence Designer. Note the name of the sequence.

2. Depending your environment:

l Launch your local installation of Workflow Composer.

— OR —

l Access your instance of the hosted Workflow Composer and launch the application.

3. In Workflow Composer, click Open in the Server section of the ribbon.

4. In theOpen Workflow Definition From Server window, click theName filter above the grid to sort the work-
flows alphabetically, scroll down to the Entity Void section, and locate your sequence.

5. Expand the sequence, select a workflow definition version, and click Open. The initial workflow definition for
the sequence is displayed.

6. Edit, publish, enable, and save the workflow in Workflow Composer.

7. In Forms Renderer, reload the webpage for the sequence and verify that the changes made in the workflow
are displayed as expected.

Forms Builder Version 3.6.1 395 Help Guide

Welcome and Confirmation Forms
The first form in a form sequence is often designed as aWelcome form. It contains only one navigation button
(Next) and is the first state in a workflow. When it is added to a form sequence, the Form Names column in the
Sequence List includes the Welcome form.

The last form in a sequence is the end state in a workflow. It is the form chosen as the End State Form in the
Sequence Properties pane in Sequence Designer. You must choose an End State Form (no default). In Forms Builder
3.5 and later, the names of forms with 'End State' property appear in the Form Names column of the Sequence List.
Previously, they were not listed.

A Default-Confirmation form is available, however, this form will be overwritten when Forms Builder is updated.
Either create a new form, or make a copy of this form in Form Designer and update it as appropriate (branding, links
to other sites or sequences, etc.). Save it, and select “End State” in the Save dialog. This will make it appear in the
“End State Form” property list for a sequence. It will not appear in the Forms list in Sequence Designer.

If, at some later time, you want to:

l Change the end state form, you must update the End State Form property in the sequence for the new form
and re-save the sequence.

l Use the end state form as a regular form, re-save it with the “End State” property cleared. This will remove it
from the “End State Form” list in the Sequence Properties and put it in the Forms list in Sequence Designer.
This will not affect any previous sequences where it is used as an End State. Doing this in reverse is also true.

You can also add a new State in the workflow or rename an existing State to use an End State form without
consequences.

When editing a workflow definition, keep in mind that a state in the state machine workflow equates to a
form within the sequence. The name of a State must match the name of a Form to be rendered properly. If
Renderer encounters a State in workflow definition that does not match name of any Form created in Form
Designer, an error similar to the following will be generated.

Create a Custom Welcome Form

In Form Designer, select the Welcome form and click Save As. Then modify the new form.

— OR —

Forms Builder Version 3.6.1 396 Help Guide

1. In Form Designer, click New, and drag the controls you want to use to the Layout pane. Typically, the HTML
component will be used to display a 'Welcome' statement.

2. In the Control Property Settings pane, specify the desired properties.

3. Save the form with a new name.

Create a Custom Confirmation Form

In Form Designer, select the Default-Confirmation form and click Save As. Then modify the new form.

— OR —

1. In Form Designer, click New and drag the controls you want to use to the Layout pane. Typically, the HTML
component will be used to display a "Thank You" statement.

2. In the Control Property Settings pane, specify the desired properties.

3. Click Save and complete the dialog. Be sure to select the End State option.

Note: The form is saved and added to the Forms list in Form Designer. You can modify the form as needed. If
you save the form again without the End State attribute (after previously saving the form with the attribute),
the form appears in the Forms column in Sequence Designer but remains available as an End State Form in
existing workflows that already contain the form.

4. In Sequence Designer, select the sequence that will use your new form.

5. In the Sequence Properties pane, in the Value field of the End State Form property, select an End State
Form.

Do not select the Default-Confirmation form in sequences that will be moved to production because the
Default-Confirmation will be overwritten during the next upgrade.

Forms Builder Version 3.6.1 397 Help Guide

6. Save the sequence.

7. Navigate to the Sequence List and test the sequence.

Do not leave the Default-Confirmation as the End State Form for sequences that aremoved to production. This form
will be overwritten during the next upgrade. In all sequences that are exported to production, replace the Default-Con-
firmation form with a custom confirmation form.

Forms Builder Version 3.6.1 398 Help Guide

Themes
A theme controls the presentation of content in a website. A theme is a collection of files that work together to con-
trol how content is displayed. The files in a theme can include style sheets (.css), images, fonts, color schemes,
scripts, templates, and text files. The name of a theme maps to a .css file.

Forms Builder pre-populates a set of Bootstrap, Kendo, and Custom themes.

l Bootstrap themes are primarily used for layouts, containers for elements, and general webpage elements.

When upgrading to Forms Builder 3.6.1 and later, any new themes are installed to the Content/bootstrap dir-
ectory on the Forms Builder server and are available for selection. The available themes are not automatically
added to the Bootstrap themes in Settings. Click theAdd Theme button and specify the theme name and
CSS file name from the table below. You can change the name, but the given CSS file name must be used.

Common Name File Name

Cerulean bootstrap.cerulean.min.css

Cosmo bootstrap.cosmo.min.css

Cyborg bootstrap.cyborg.min.css

Darkly bootstrap.darkly.min.css

Default bootstrap.default.min.css

Flatly bootstrap.flatly.min.css

Journal bootstrap.journal.min.css

Lumen bootstrap.lumen.min.css

Paper bootstrap.paper.min.css

Readable bootstrap.readable.min.css

Sandstone bootstrap.sandstone.min.css

Simplex bootstrap.simplex.min.css

Slate bootstrap.slate.min.css

Spacelab bootstrap.spacelab.min.css

Superhero bootstrap.superhero.min.css

United bootstrap.united.min.css

Yeti bootstrap.yeti.min.css

Bootstrap Themes

Forms Builder Version 3.6.1 399 Help Guide

l Kendo themes are used for Kendo controls (e.g., buttons, check boxes). Kendo themes override Bootstrap ele-
ments that are used in rendering Kendo controls. Kendo themes do not just override colors and fonts, they
also override borders, spacing, padding, and margins to make the controls look better.

For more information, see Kendo UI ThemeBuilder.

Note: Both Bootstrap and Kendo themes apply CSS based on media. That is, the size, type, and host oper-
ating system of the browser that is used. Thus, a complex interaction results where one may apply a different
CSS set for a browser size, type or host OS, while the other does not switch to different CSS.

l Custom themes control the presentation of elements that are specific to an institution (e.g., logos, per-
sonalized items).

You can add and remove Bootstrap, Kendo, and Custom themes and apply specific themes to individual sequences.
The available themes are configured in the Settings workspace. Themes can then be associated with individual
sequences within the property settings in Sequence Designer.

You can customize the style of controls using the Class property. For more information, see Custom Styles.

Configure Themes

1. Select the Settings tile on the home page of Form Designer.

2. In the left pane, select a theme group. The available groups are Themes-Bootstrap, Themes-Custom, and
Themes-Kendo.

The right pane displays themes in each theme group. Each theme has aName and Value. The Value indicates
the .css file mapped to the Name.

When a theme group is selected, the Add Theme and Delete Theme buttons appear above the right pane.

http://demos.telerik.com/kendo-ui/themebuilder

Forms Builder Version 3.6.1 400 Help Guide

3. To add a theme, click Add Theme. The Add New Theme popup is displayed.

4. In theName field, specify the name of the theme.

Forms Builder Version 3.6.1 401 Help Guide

In theValue field, specify the .css file.

l If the .css file is stored locally, specify only the .css file name in the Value field.

Forms Builder locates the .css file in the appropriate directory for each theme group.

<Renderer installation folder>\Content\bootstrap
<Renderer installation folder>\Content\custom
<Renderer installation folder>\Content\kendo

l If the .css file is retrieved from a website, specify the URL for the .css file in the Value field.

5. Click Add. The popup is closed.

6. Click Save in the Settings workspace. The added theme is now available in Sequence Designer.

Apply a Theme to a Sequence

1. Select the Sequence Designer tile on the home page of Form Designer.

2. Select a sequence in the Sequences pane.

3. In the Properties pane:

l Select theName of a theme group, e.g., Theme-Bootstrap, Theme-Custom, or Theme-Kendo.

l Click theValue field and select a theme from the drop-down list.

Forms Builder Version 3.6.1 402 Help Guide

Note: If you select the Bootstrap theme named 'Paper', a custom.css is required to apply style over-
rides to the check box element.

4. Save the sequence.

5. Review the rendered sequence. If necessary, refresh the browser cache by pressing Ctrl+F5. Note the
changes in the content presentation based on the selected theme.

To remove a previously selected theme from a sequence, select the blank option in the Value field.

Forms Builder Version 3.6.1 403 Help Guide

Sequence Identifier
The Sequence Identifier property enables you to specify the URL that will be used by students to access a Forms
Builder sequence. This property defines an identifier for a Renderer URL. It is appended to the sequence URL
(http:/mymachine:myport/#/renderer/) instead of the numeric identifier (WorkflowDefinitionId) generated by
Forms Builder.

The Forms Builder Settings pane provides an option that controls whether the Sequence Identifier is required for all
sequences.

l When "Require Sequence Identifier" is selected (true), sequences ...

... with Sequence Identifier can be accessed only using the Sequence Identifier. The WorkflowDefinitionId can-
not be used.

... without Sequence Identifier cannot be accessed. The following message is displayed in Forms Renderer.

Forms Builder Version 3.6.1 404 Help Guide

l When "Require Sequence Identifier" is not selected (false), sequences...

... with Sequence Identifier can be accessed using the Sequence Identifier or the WorkflowDefinitionId.

... without Sequence Identifier can be accessed using the WorkflowDefinitionId.

The Formsbuilder.Sequence table stores the sequence properties including WorkflowDefinitionId and Sequence
Identifier (Url).

Assign a Sequence Identifier to a Sequence

1. In Sequence Designer, select the sequence to which you want to assign a Sequence Identifier.

2. In the Properties pane of the sequence, specify a Sequence Identifier and save the sequence.

The Sequence Identifier value...

... must be unique (see Create a Unique Sequence Identifier).

... is not case sensitive.

... can be any name valid in a URL. (Characters like spaces will be encoded on save, e.g., Campus+12+RFI.)

Forms Builder Version 3.6.1 405 Help Guide

... must not be a number (which will be interpreted as a WorkflowDefinitionId).

3. In the Sequence List, use the copy icon to retrieve the final URL.

4. Paste the final URL into a browser window or click to access the sequence. Note that the Sequence Iden-
tifier value is appended to the Renderer URL, e.g.,

http://<server>.<domain>:<port>/#/renderer/Campus+12+RFI

Create a Unique Sequence Identifier

To ensure that your Sequence Identifiers are unique and hard to guess, you could use GUIDs (128-bit integer num-
bers) generated by tools such as http://guidgen.com or http://guidgenerator.com.

https://www.guidgen.com/
http://guidgenerator.com/

Forms Builder Version 3.6.1 406 Help Guide

Delete Sequences
You can delete a sequence. When the delete action is executed, the sequence, the corresponding workflow defin-
ition, and all associated workflow versions will be deleted. The forms referenced in the sequence will not be deleted.

1. In Sequence Designer, select the sequence you want to delete.

2. Click Delete in the action bar. The following message is displayed: "Are you sure you want to delete <sequence
name>?" Click OK.

3. If the sequence is not associated with enabled workflow versions or an entry in the durable instancing table,
the sequence is deleted. A confirmation message is displayed.

4. If the sequence is associated with enabled workflow versions, an error is displayed.

To delete a sequence that has an enabled workflow, perform the following steps:

a. In Workflow Composer, click Open from Server and locate the sequence.

b. Clear the Enabled check box and click Save.

5. If the sequence cannot be deleted because it is associated with durable instance records, an error is displayed.

Forms Builder Version 3.6.1 407 Help Guide

To delete a sequence associated with durable instance records, perform steps a and b or see Delete Sequence
Instances.

a. In Workflow Composer, click Open Persisted Workflow and locate your sequence.

b. Select the workflow instance associated with the sequence to be deleted, click Terminate, and click
Yes.

6. After you have disabled the workflow and/or terminated the persisted workflow, return to Sequence
Designer, select the sequence again, click Delete, and click OK.

A confirmation message is displayed.

Delete Persisted Workflow Instances

In Forms Builder 3.6 and later, you can delete persisted workflow instances of sequences from the Sequence
Designer workspace instead of having to use Workflow Composer to accomplish this. Sequence Designer provides
two options:

l Delete Sequence Instances removes all persisted workflow instances of a specific sequence

l Delete All Instances removes all persisted workflow instances of all sequences.

Delete Sequence Instances

1. Select a sequence in Sequence Designer.

2. Click Delete Sequence Instances. The following message is displayed:

Are you sure you want to delete all persisted instances for sequence <sequence name>? This will abort any work-
flows in progress for this sequence.

3. Click OK to proceed. All persisted workflow instances of the selected sequence are deleted.

The sequence itself is still available in Sequence Designer.

4. To remove the sequence from Form Designer, select the sequence and click Delete Sequence. The following

Forms Builder Version 3.6.1 408 Help Guide

message is displayed:

Are you sure you want to delete sequence <sequence name>? This will abort any workflows in progress for this
sequence.

5. Click OK to proceed.

This deletes persisted instances, disables, and deletes the workflows, and removes the sequence from
Sequence Designer.

Delete All Instances

1. Click Delete All Instances in Sequence Designer. The following message is displayed:

Are you sure you want to delete all persisted instances for all sequences? This will abort any workflows in pro-
gress.

2. Click OK to proceed. All workflow instances of all sequences are deleted.

You can confirm this in Workflow Composer. The persisted workflow grid is cleared.

The sequences are still available in Sequence Designer.

Forms Builder Version 3.6.1 409 Help Guide

Export/Import
The Export/Import tile on the Forms Builder home page links to a workspace that allows you to export and import
sequences and associated workflows from one environment to another. For example, you may have created and
tested sequences in a staging environment. You then export the sequences from the staging environment to a net-
work location and later import them into the production environment.

If sequences have been translated in the staging environment, the .po files for the localized sequences need to be
transferred to the production environment using the Import Translation tab in the Internationalization workspace
of Form Designer. For more details see Internationalization.

Prerequisites
The application databases in the source and target systems must be identically configured regarding School Defined
Fields (SDFs) in CampusNexus Student and Custom properties/objects in CampusNexus CRM. If import sequences
with SDFs or Custom fields are defined only in the export environment, an error will be seen when the sequence is
rendered in the new environment and a user attempts to enter a value for an undefined SDF or Custom field.

The Forms Builder environment must be identically configured regarding the integration of CampusNexus CRM
and/or CampusNexus Student. The export/import process does not check for mismatched environment entities.
For example, the export/import process will not detect if a sequence from a CampusNexus CRM environment is
imported into a CampusNexus Student environment. The sequence will fail when rendered.

Export Sequences
1. On the Forms Builder home page, click the Export/Import tile.

The Export tab is displayed by default. It contains a grid listing sequence names, forms contained with the
sequences, the date modified, and the workflow status. Only sequences that have enabled workflows can be
exported.

Forms Builder Version 3.6.1 410 Help Guide

2. Use one of the following options to select sequences. The number of selected sequences will be displayed
next to the Export button.

l Click Select All.

l Use the column filters to narrow your search and click Select Filtered.

l Clear "Select All" and "Select Filtered" and select individual sequences.

Use the Is Workflow Enabled column to determine if the workflow for a sequence is enabled. The export
process requires enabled workflows.

Note: In Forms Builder 3.5 and later, the option to "Include workflow version history for exported
sequences" is removed because this option provided unnecessary data and caused export files to grow too
large. The maximum size of an export file is 2000 megabytes. If this size is exceeded, an error will occur during
the import.

3. Click Export. When export is complete, your browser displays a message with the name of the export file.

4. Select Save File and click OK to save the export file to the \Downloads folder on your local machine. You
can copy the file to a new name or location if desired; just note that it must remain an .xml type file.

Forms Builder creates an export file in XML format and makes the file available as a stream on the server. The export
file is saved with the specified name in the specified location. The export file contains the Forms Builder version and
the export date.

For every sequence that is exported, data from the following tables is saved:

l Formsbuilder.Sequence
l Formsbuilder.Form
l WorkflowDefinition
l WorkflowDefinitionVersion

Forms Builder Version 3.6.1 411 Help Guide

The data from the above tables include Name, Title, Description, JSON, XAML and so on. The Ids, DateCreated/Modi-
fied are not in the export file and will be generated on import. The exported sequences carry with them any saved
Forms Builder elements and configurations required by the sequence (for example, fields, components, properties,
and workflow definitions). End state form data for each sequence is included in the export file.

Import Sequences
1. On the Forms Builder home page, click the Export/Import tile.

2. Select the Import tab, click Select exported file, and navigate to the location where the export file was
saved.

After selecting the export file, the sequences that are available for import are listed in the grid.

3. Use one of the following options to select sequences. The number of selected sequences will be displayed
next to the Import button.

l Click Select All.

l Use the column filters to narrow your search and click Select Filtered.

l Clear "Select All" and "Select Filtered" and select individual sequences.

4. If you want to force an overwrite of sequences and workflows with the same name, select the check box in
the header of theOverwrite All column OR select this option for individual sequences.

If the check box is not selected, sequences with no name conflicts will still be imported but those with duplic-
ate or conflicting data will not be.

Note: TheDefault-Confirmation, Default-Frame, and Default-DocuSignWait forms are handled as special cases
during the import. These forms will remain unchanged in the new environment and will not be flagged as
duplicates. This allows for form reuse in multiple sequences and import of sequences with default forms
without forcing an overwrite. If, however, theOverwrite duplicates option is selected, the forms will be
updated.

5. Click Import. The import process deserializes the XML of the export file into the appropriate entities. If there
are any issues with the export data causing errors with deserialization, an error is displayed and logged.

Note: If a theme is missing in the new environment, the imported sequence is rendered using the default
styles.

The Import Status column displays the import result, for example: Successful

Forms Builder Version 3.6.1 412 Help Guide

— OR —

The Import Status column indicates if errors occurred during the import or duplicate records were found.

When you have completed the import process, check the imported sequences in Renderer to make sure that they
are imported correctly.

Forms Builder Version 3.6.1 413 Help Guide

Internationalization
With the enhancements for internationalization and localization, you can use Forms Builder 3.5 and later to create
form sequences in multiple languages.

Definitions
Internationalization (or globalization) refers to the design and development of a culture-neutral and language-
neutral product that enables easy localization for target audiences in all parts of the world.

Internationalization requires:

l Enabling the code to support language, local, or cultural preferences (e.g., use of Unicode internally, support
for right-to-left and vertical text direction, time zone awareness, local date and time formats, local calendars,
local number formats, and so on).

l Separating localizable content from the source code so that localized alternatives can be loaded based on the
user's selection.

Internationalization is often written as i18n, where 18 is the number of letters between i and n.

Localization refers to the adaptation of a product to meet the language, cultural and other requirements of a spe-
cific target market (a locale). A locale is a collection of specific numeric, date and time formats, currency, symbols,
and other requirements.

The localization process involves translating text and selecting locale-specific components. Translatable text, includ-
ing labels and validation messages, is extracted from the source code, translated, and rendered based on the user's
language/culture choice.

Localization is sometimes written as l10n, where 10 is the number of letters between l and n.

Internationalization and Localization in Forms Builder
TheGettext library of tools was added to the Forms Builder 3.5 code. The Gettext utilities cover all phases of the
translation process:

a. Gettext scans the code and places the translatable text strings (case sensitive) in a .pot (portable object tem-
plate) file. The .pot file has all the translation strings (the msgstr parts) left empty, for example:

msgid "Hello world"
msgstr ""

b. You use the .pot file to create one .po (portable object) file per locale (e.g., fr.po, de.po, es.po). The .po files
have all the translation strings (the msgstr parts) filled in, for example:

msgid "Hello world"
msgstr "Bonjour le monde"

Forms Builder Version 3.6.1 414 Help Guide

In components that are shared with other CampusNexus products (core UI components), an attribute that marks
translatable text was added to properties that can contain text, such as Label, Required Message, Selection Text,
Tooltip, etc. The Gettext tools extract the marked text strings.

All custom Forms Builder and Kendo components that have properties with translatable text run the angular-get-
text tools. The text to be translated is marked with a translate directive. The Gettext tools extract the marked
text strings.

In addition to form text, the .pot file includes non-form text so that text strings for the following items can be trans-
lated using .po files:

l Button labels:
o Next/Back
o View Summary/Hide Summary (View Summary page)
o Submit (internal page displayed after the DocuSign process)
o Show Filter Row and Select & Cancel (in Single-select Search components)

Note: If button labels are changed in workflows, you will have to manually add the translations to the .pot
file, unless the labels are already in the file and translated.

l Version information
l Form Titles
l Form Section Titles
l Messages generated by Forms Builder Settings
l Error messages from Forms Builder (Error messages from CampusNexus CRM or CampusNexus Student are

not captured in the .pot file.)
l Error messages, warnings, and notifications triggered by form validations
l Values of Custom Value Lists in Drop-down and Multiselect components
l Model Data in Grid and Calendar/Scheduler components
l Grid Column validations

Note: Credit Card Payment forms using PayPal, ACI, or IATS payment gateways will not be translated as these
vendors do not support localization at this time.

Culture Scripts for Kendo Components

Forms Builder uses a set of Kendo components that support localization around formats of dates and currency. The
Kendo components in Forms Builder are:

l Calendar/Scheduler
l Date Picker
l Date Time Picker
l Masked Text Box (globalized mask literals)
l Numeric Text Box
l Time Picker

When a Locale component is included on the first form of a sequence, all Kendo components within the sequence
will run the culture scripts to apply the setting selected in the Locale component.

Forms Builder Version 3.6.1 415 Help Guide

Example

A Locale component offering a drop-down list with multiple languages, including French, is placed on the welcome
form of a sequence. The user selects French and proceeds to a form that includes a Numeric Text Box with Euro cur-
rency symbol, a Date Picker, and a Calendar/Scheduler.

For more information, see https://docs.telerik.com/kendo-ui/framework/globalization/overview.

The translation of labels and validation messages in Kendo controls is handled by the Gettext tools.

Localization of DocuSign Forms

Users can set the display language for DocuSign from the selection menu at the bottom of the DocuSign Iframe
page.

Forms Builder Version 3.6.1 416 Help Guide

Steps to Localize Sequences
1. Add the Locale component to the first form in a sequence. Use this component to set up the language and

culture selections supported in a sequence.

2. Re-save all forms that were created in Forms Builder 3.4 and earlier.

Note: In forms created prior to Forms Builder 3.5 with File Upload component, the File Upload button will
not be translated. If the component is replaced with the new File Upload component created in 3.5, the but-
ton is translatable.

Any additional tasks depend on the types of components used in the sequence.

a. For HTML components, apply the translate attribute to the text you want to localize. The attribute
can be added to any HTML element. For example:

<div translate>Translate me!</div>

If the HTML component has a <p> or <div> element (or any other valid HTML element) that contains
text and a link, enclose the text in a element and add the translate attribute to the
. Do not include non-alphabetic character at the end of sentences (e.g., !, ..., ?) into the span
with translate tag. For example:

<p style="color:green; word-wrap:break-word;">For more info,
please visit: Campus Tech Web-
site</p>

Do not use the& symbol within HTML text because it will not be properly pulled into .pot file or trans-
lated. Replace & with the word "and".

b. If the optional Header Template property is used for Multiselect components, apply the translate
attribute to the Header Template property. For example, to translate the Header Template property
value <div>Degrees</div>, specify:

<div><b translate>Degrees</div>

c. If your sequences include text that originates in a workflow (e.g., custom validation items), perform the
steps needed to add TranslateText activities.

d. If your sequences include Drop-down List, Multiselect, Single-select Search, or Calendar/Scheduler com-
ponents, use the Lookup Translation Members orOData Translation Members (on Cal-
endar/Scheduler) property to extract translatable text from an OData query (e.g., names of table
columns). This property is a comma separated list of items for a Select statement in an OData query.
The query results will be included in the POT file generation.

Note: Avoid using text in your forms that can be interpreted as an HTML tag by a browser (i.e., text wrapped
in < and >, for example, <Select>). This text may not be translated properly in the current version (2.4.1) of
angular-gettext with Internet Explorer and Microsoft Edge browsers.

3. Go to the Forms Builder home page and click the Internationalization tile.

Forms Builder Version 3.6.1 417 Help Guide

The Generate POT tab is displayed by default. It contains a grid listing sequence names, forms contained with
the sequences, and date modified.

4. Use one of the following options to select sequences. The number of selected sequences will be displayed
next to the Generate POT File button.

l Click Select All.

l Use the column filters to narrow your search and click Select Filtered.

l Clear "Select All" and "Select Filtered" and select individual sequences.

Most often you would Select All sequences to extract all text in all forms. The text will be translated outside of
Forms Builder and stored in .po files for the supported languages. If sequences are added or updated, select
all sequences again. The generated .pot file will be updated to include the changes. The .po files will retain all
previously translated text and just need to be updated to include the changes.

In cases where an institution uses different forms for different locales/campuses, you might want to generate
.pot files with a subset of sequences.

5. If you selected forms that were created prior to Forms Builder 3.5, select the check box below the Generate
POT File button to resave the forms. This only needs to be done once to add the translate tags needed for
the POT generation to the older forms.

6. Click Generate POT File. When processing is complete, a message with the name of the .pot file is displayed.
We recommend usingNotepad++ to open the file.

Forms Builder Version 3.6.1 418 Help Guide

Forms Builder Version 3.6.1 419 Help Guide

The .pot file will contain the names of forms where the text was found, the line numbers, and the msgids
with the text strings to be translated. If the same text appears multiple times in different forms, the .pot file
will capture a single msgid so that only one text string needs to be translated.

If your sequences contain components with Lookup Query properties, manually edit the .pot file in
Notespad++. For the selection list values, add text strings enclosed in quotes to the msgid and msgstr fields.
To obtain the values in the selection lists, render the sequences or run the OData queries directly in a
browser. Be sure to include any trailing spaces on the text strings in the .pot file. Strings have to match
exactly for translations. After adding the strings to the .pot file, update the .po files and import them into
Forms Builder.

Forms Builder Version 3.6.1 420 Help Guide

The Lookup Query property is found in the following components:

l Calendar/Scheduler
l Drop-down List
l Grid with Query on a Column
l Multiselect
l Single-select Search
l Typeahead

Note that the Typeahead component does not have a Lookup Value Member property. Therefore, any values
in the Typeahead selection list that are translated have to be saved to the database in the original language.

7. Outside of Forms Builder, use a translation tool such as Poedit (see https://poedit.net/) to create and save
.po files for each supported locale.

https://poedit.net/

Forms Builder Version 3.6.1 421 Help Guide

Note that the .pot generation is case sensitive. For example, if the text strings include the words "campus"
and "Campus", you will need translations for both words. If only "Campus" is translated in the .po file and a
page renders with "campus", the page will indicate that a translation was not found.

You can review the .pot files using a tool like NotePad ++. However, we do not recommended that you manu-
ally update the .pot files.

Do not change the file names of the .po files because the locale is part of name and has to be in a specific
format. Only 1 .po file per locale is allowed.

8. In Forms Builder, click the Internationalization tile and select the Import Translations tab.

9. Click Select PO files and navigate your .po file(s). The imported file(s) will be listed on the Import Translations
tab. The Language Code column indicates the locale(s). The Status column indicates the import suc-
cess/failure.

Note: The imported translations are stored in the formsbuilder.translation database table. The table will con-
tain all translations found in the .po files. Text strings without translations will not be imported.

10. After completing the POT Generation and Import Translations steps, you can view rendered sequences with
translated text based on the locale selection.

If POT Generation and Import Translations have not been completed for a locale, a warning message is dis-
played (), and the translatable text is displayed in the default language set in the Locale component (if used).

Forms Builder Version 3.6.1 422 Help Guide

In Forms Builder 3.6 and later you can enable the Debug Translations option in the Settings workspace to help
troubleshoot translated sequences. When this option is selected, text processed by the translation engine on
rendered forms will be wrapped with '[]' markers and untranslated text will be prefixed with `[MISSING]:`.

The Login Locale setting can be used to add a drop-down list for locales on the Azure AD login page. For more inform-
ation, see Login Locales.

If the "Create Account" option is selected on the Azure AD login page, the user is directed to the "New Account
Creation" page in Portal. The header bar in Portal has a "Choose language" drop-down that is not linked to the Login
Locales setting.

Forms Builder Version 3.6.1 423 Help Guide

Custom Content
The Custom Content tile on the Home page of Form Designer enables users to upload files used to customize forms.
This feature is intended for users who do not have access to their web site file system or who simply want to use this
feature to store custom files in the database and use the files when building forms.

Custom files can include 4 different types of content: images, CSS styles, JavaScript, and logos.

1. Image files

Currently, the following extensions are allowed: .jpg, .jpeg, .bmp, .svg, .gif, .ico, .png, and .apng.
Please check https://en.wikipedia.org/wiki/Comparison_of_web_browsers for details on support in various
browsers.

2. CSS styles (.css extension)

3. JavaScript code

Note that since .js files are active scripts, you must ensure that security guidelines are fol-
lowed. Several libraries that are part of Renderer that can be utilized, including JQuery, w3 (from w3schools.-
com), Lodash, he, jsep, kendo, clipboard that will work outside of the Campus Management Corp. angular
application.

4. Logo for the page (not to be confused with header or footer content for a form)

To upload custom content, click Select custom content file and select the file (or drag the file into the selection
area). The file will be uploaded to the database used by Forms Builder and added to the grid showing the currently
uploaded files.

To remove a custom content file, select it in the grid, click Delete, and click OK on the confirmation message. The
file is deleted.

Image Files

https://en.wikipedia.org/wiki/Comparison_of_web_browsers

Forms Builder Version 3.6.1 424 Help Guide

While image files can be directly embedded in HTML by going to https://codebeautify.org/image-to-base64-con-
verter and creating the data to embed, this Custom Content feature does the work for you. Anywhere you need an
image, simply upload an image file and add an HTML component to the page. Currently, the following extensions
are allowed: .jpg, .jpeg, .bmp, .svg, .gif, .ico, .png, and .apng.

Use the following HTML to refer to the uploaded file:

<cmc-custom-content-image src=”myImage.png” model=”myModel” />

This will place the image on the page at the location of the component. If you ever need to change the image, simply
upload a new file with the same name. You could also add style information for the image using CSS.

Model is an optional attribute. If it is specified and an argument in a workflow is assigned a value, it will be used to
retrieve the image uploaded by name. If not, the src value is used. This allows you to programmatically decide which
image to display.

Note: In the model value, specify either the argument name only (e.g., "myModel") or the argument name with the
"vm.models." prefix (e.g., "vm.models.myModel").

The src value acts as the default if model has not been set or modified in workflow, otherwise it is ignored.

Example

Note: You can combine multiple directives in one HTML component as shown in the example with "cmc-custom-con-
tent-image" and "cmc-custom-content-css".

CSS Files (Style Sheets)

Upload your style sheet. It does not have to be embedded in <style></style> tags, but it can be.

Use the following directive in your HTML component. The HTML component can be made Visible=false since it does
not need to be seen on the page.

<cmc-custom-content-css src=”myCss.css” />

Example

https://codebeautify.org/image-to-base64-converter
https://codebeautify.org/image-to-base64-converter

Forms Builder Version 3.6.1 425 Help Guide

JavaScript

Upload your Javascript file. The script does not have to be embedded in <script></script> tags, but it can be.

Use the following directive in your HTML component. The HTML component can be made Visible=false since it does
not need to be seen on the page.

<cmc-custom-content-js src=”myJavascript.js” />

Example

Sequence Logo

Forms Builder Version 3.6.1 426 Help Guide

This feature has flexibility in that the image can be set programmatically in a workflow. Simply create your logic in
the workflow (for instance by campus name) that defines which upload file to use by name and assign that to a
named string argument (the model value).

Use the following directive in your HTML component. The HTML component can be made Visible=false since it does
not need to be seen on the page.

<cmc-custom-content-logo src=”campusA_Logo.png” model=”campusSelection” />

The src value acts as the default if model has not been set or modified in workflow, otherwise it is ignored.

Example

Note: In the model value, specify either the argument name only (e.g., "myModel") or the argument name with the
"vm.models." prefix (e.g., "vm.models.myModel").

Forms Builder Version 3.6.1 427 Help Guide

Settings
The Settings workspace is displayed when you select the Settings tile in the home page. This workspace enables you
to define configuration settings for Forms Builder.

After a fresh installation of Forms Builder, before you can publish the URLs of rendered form sequences for end
users, youmust log in to Form Designer, select the Settings tile, provide your DocuSign credentials, and update
reCAPTCHA and Payment test keys. Updating the Error Message Text in the Settings is recommended but not
mandatory.

Forms Builder Version 3.6.1 428 Help Guide

Element Description

Click the left arrow to return to the home page.

Save changes made to the Forms Builder settings.

Use the search/filter tool to find a setting or scroll through the list. When you select a setting, the right
pane displays the values associated with the setting.

Auto Logout
Delay

Specify the delay in seconds before a user is automatically logged out from a sequence. The default
value is 10 seconds. The valuemust be 0 or greater and there is nomax. The delay applies if the Auto
Logout when Complete property is selected in Sequence Designer.

Debug -
Show Gen-
erated JSON
Model

When this option is set to true (default=false), additional data that shows the values for objects on the
form will be shown at the bottom of each rendered form. For more information, see Troubleshoot
Rendered Sequences.

Debug Trans-
lations

When this option is selected, text processed by the translation engine on rendered forms will be
wrapped with '[]' markers and untranslated text will be prefixed with `[MISSING]:`.

DocuSign See DocuSign Settings.

DocuSign
Error Mes-
sage Text

Specify themessage that is displayed when the DocuSign process was not completed due to an error
condition, for example: "The DocuSign site reported that the signing authorization timed out, or some
other network error occurred." For more information, seeGetDocuSignRecipientStatus.

Settings Workspace

Forms Builder Version 3.6.1 429 Help Guide

Element Description

Enable Ren-
derer Cach-
ing

In Forms Builder 3.4 and later, Renderer Caching is enabled (default=true) to increase the overall effi-
ciency of sequence execution and performance of Forms Builder.

If you change the Enable Renderer Caching setting, youmust execute an IISreset on the server.

Designer caching is on all the time and produces a noticeable performance improvement whenmoving
between panels and workspaces within Designer.

If Renderer Caching is enabled and no value is set for <add key="RendererUrl" value=""/> under
<appSettings> in the Designer web.config file, the followingmessage is displayed upon logging into
Designer. Follow the instructions in themessage to correct the configuration.

Enable
Sequence
List

This setting determines whether users can access the Sequence List at the Forms Renderer URL
(http://<server>.<domain>:<port>/#/Sequencelist). To enable the Sequence List, set this option to true
(default=false).

In previous versions of Forms Builder, access to the Sequence List was controlled by a setting in the
web.config file for Forms Renderer.

Forms Builder Version 3.6.1 430 Help Guide

Element Description

Entity and
Entity Prop-
erties Vis-
ibility

This setting enables you to filter entities and entity properties that are exposed in Form Designer when
the "Show All Fields" option is cleared.

1. Select the database provider (CRM or Student). The Entities panel is populated. The first time
this setting is accessed, it takes a few minutes to update and cache the list of entities.

2. In the Entities panel, select an entity. The Properties panel is populated with properties for the
selected entity. Clear the check box to hide an entity. For each database provider several entit-
ies are pre-selected. You can change the settings for the pre-selected entities.

3. In the Properties panel, select the properties you want to expose. Clear the check boxes for
properties you want to hide.

4. Click Save.

5. Return to Form Designer, select the provider, and verify that the list of entities matches
your settings.

Error Mes-
sage -
Include
Debug Info

When this setting option is set to true (default=false), logmessages for server-side errors will be dis-
played in Forms Renderer.

This option is useful in a testing environment; however, it should be set to false in a production envir-
onment.

Forms Builder Version 3.6.1 431 Help Guide

Element Description

Error Mes-
sage Text

When a server-side error occurs during the processing of a rendered sequence that cannot be corrected
via form resubmission, an error message is displayed. The default message text is "Unable to process
form. Please contact your administrator for assistance."

You can edit themessage text on the Settings tile in Form Designer and save your custommessage.
You can use HTMLmarkup to encode a URL or email address if desired.

By design, the error details will only be captured in the log files. You need to check the log
files to troubleshoot the error. For more information, see Log Files.

Login
Locales

Use this setting to select locales that will be displayed in a drop-down list on an Azure AD login page.
Designate one of the selected cultures as the default. If only one locale is selected, the Azure AD login
page will apply the selected locale without displaying a drop-down list.

The Login Locales shouldmatch the Locale component used on the forms. If the Locale component on
the form:

l does not contain the Login Locales setting, the form will use the default locale set in the Locale
component.

l contains the Login Locales setting, the Login Locale will be passed to the Locale component.

If the "Create Account" option is selected on the Azure AD login page, the user is directed to the "New
Account Creation" page in Portal. The header bar in Portal has a "Choose language" drop-down that is
not linked to the Login Locales setting.

Payment See Credit Card Payment component.

reCAPTCHA SeeCAPTCHA component.

Require
Sequence
Identifier

See Sequence Identifier.

Themes-
Bootstrap

When a Themes setting is selected, the Add Theme and Delete Theme buttons become available.
You can add or delete individual .css files associated with the themes.

For more information, see Themes.Themes-Cus-
tom

Themes-
Kendo

Forms Builder Version 3.6.1 432 Help Guide

In Forms Builder 3.5.1 and later, the ability to set NLog levels in the Settings workspace of Form Designer is
removed to prevent conflicts with Azure log configurations. Azure logs are stored in customer-specifc tables. If your
Forms Builder deployment is in an Azure environment, contact Campus Management Corp. obtain access
to the Azure log tables or to request changes in the NLog settings.

Forms Builder Version 3.6.1 433 Help Guide

Workflows
Form sequences created in Forms Builder 3.x automatically create state machine workflows. These workflows can
be modified using Workflow Composer to perform specific activities when the form sequences are executed. The fol-
lowing topics provide a general overview of state machine workflows, highlight common tasks associated with work-
flows, and provide reference information on workflows activities designed for use with Forms Builder.

Note: The user who creates workflows is responsible for catching exceptions. Any unexpected and uncaught excep-
tions will abort workflows. For the guidelines on exception handling within workflows, refer to Recommended Cod-
ing for Activity Errors in Workflow Help.

https://help.campusmanagement.com/WF/Content/Workflow/CodingForErrors.htm
https://help.campusmanagement.com/WF/Content/Workflow/CodingForErrors.htm

Forms Builder Version 3.6.1 434 Help Guide

Workflow Activities for Forms Builder
Workflows created by Forms Builder use workflow activities from theCmc.Nexus.FormsBuilder.Workflow
namespace.

These activities are made available by installing the Forms Builder Contracts 3.x.x package using the Package
Manager within Workflow Composer.

In addition to the workflow activities from the Cmc.Nexus.FormsBuilder.Workflow namespace, workflows for form
sequences use other activities, such as generic activities (Assign, If, StateMachine, etc.) and workflow activities
designed for CampusNexus packages (CreateEntity, SaveStudentPortalUserAssociation, LookupStudent, etc.). For
detailed information about these activities, refer to Workflow Help.

https://help.campusmanagement.com/WF/Default.htm

Forms Builder Version 3.6.1 435 Help Guide

CreateDocuSignRequest
The CreateDocuSignRequest activity creates a new signature request in the DocuSign service. The activity sends all
applicable email addresses of signers and PDF files to be signed to DocuSign and receives an Envelope Id and a URL
in the response.

This workflow activity requires the following DocuSign Settings:

l DocuSign API account email and password
l Integrators Key

The CreateDocuSignRequest activity uses the end point of the API login information and the user’s account ID to
obtain the DocuSign base URL for use in subsequent API calls. DocuSign returns an Envelope ID and the base
URL identifier to the CreateDocuSignRequest activity.

An uninitialized string variable (EnvelopeId) is passed to CreateDocuSignRequest with the EnvelopeId parameter. An
unconditional assignment after the CreateDocuSignRequest assigns the value: EnvelopeId = DocuSignRequest.En-
velopeId.

Properties

Property Value
Requi-
red

Notes

DisplayName String No Specify a name for the activity or accept the default.

CreateDocuSignRequest Properties

Forms Builder Version 3.6.1 436 Help Guide

Property Value
Requi-
red

Notes

DocuSignCon-
fig

InAr-
gument<DocuSignCon-
fig>

Yes Specify the DocuSignConfig property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignConfig, and click OK.

DocuSignDoc-
ument

InAr-
gument<DocuSignDocu-
ment>

Yes Specify the DocuSignDocument property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignDocument, and click OK.

DocuSignRe-
cipients

InAr-
gument<DocuSignRe-
cipient[]>

Yes Specify the DocuSignRecipients property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, select Array
of [T], navigate to Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignRecipient, and click OK.

Forms Builder Version 3.6.1 437 Help Guide

Property Value
Requi-
red

Notes

DocuSignReq-
uest

OutAr-
gument<DocuSignReques-
t>

Yes Specify the DocuSignRequest property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignRequest, and click OK.

EnvelopeId InArgument<String> No Specify the existing EnvelopeId property if the workflow
for the DocuSign sequence contains a GetDocuSignRe-
cipientStatus activity which controls the workflow exe-
cution dependent on the signed status of the document.
For example, if a user has not yet signed document, the
workflow logic may route the user back into the DocuSign
page. In this case, the CreateDocuSignRequest activity
should reuse the existing EnvelopeId instead of creating a
new envelope (DocuSign customers are charged per
envelope).

ResumeBook-
mark

InArgument<String> No The ResumeBookmark property is used to resume awork-
flow that has been persisted while waiting for a signature.
Specify a string to be displayed when the bookmark is
resumed, e.g., "Continue when all signatures are col-
lected"

Val-
ida-
tionMessages

InOutArgument
<Val-
ida-
tionMes-
sageCollection>

No Specify a variable that can be used to capture validation
messages.

Forms Builder Version 3.6.1 438 Help Guide

GetAttachments
The GetAttachments activity is used with the File Upload component in Forms Builder. The activity returns an array
of files uploaded through the File Upload component as UploadStorageEntity[].

To access all the attached files, you can use a ForEach loop to iterate over the array; or, if a single file is attached,
access the file contents as UploadStorageEntity(0).FileData.

Forms Builder Version 3.6.1 439 Help Guide

Properties

Property Value Required Notes

ControlIdentifier InArgument<String> Yes Specify the Control Identifier property
from the Id field of the File Upload con-
trol in Form Designer.

DisplayName String No Specify a name for the activity or
accept the default.

GetAttachments Properties

Forms Builder Version 3.6.1 440 Help Guide

Property Value Required Notes

Documents OutArgument
<UploadStorageEntity[]>

Yes The activity returns an array of doc-
ument images. This property is a vari-
able that can be used as input for
subsequent activities in the workflow.

Note: To check if a file was attached,
you can insert a condition similar to the
following ULDocs.Length = 0
(where ULDocs is the variable of the
OutArgument).

ValidationMessages InOutArgument
<ValidationMessageCollection>

No Specify a variable that can be used to
capture validationmessages.

Forms Builder Version 3.6.1 441 Help Guide

GetDocuSignConfig
The GetDocuSignConfig activity retrieves the User Name, Password, Integrators Key, and REST API Url from the
DocuSign settings in Forms Builder. These values enable the workflow to log in to DocuSign.

The GetDocuSignConfig activity should be placed in the Action area of the form (state) that requires the DocuSign
signatures.

This workflow activity requires the following DocuSign Settings:

l DocuSign API account email and password
l Integrators Key

Forms Builder Version 3.6.1 442 Help Guide

Properties

Property Value
Requi-
red

Notes

DisplayName String No Specify a name for the activity or accept the default.

GetDocuSignConfig Properties

Forms Builder Version 3.6.1 443 Help Guide

Property Value
Requi-
red

Notes

DocuSignCon-
fig

OutAr-
gument<DocuSignCon-
fig>

Yes Specify the DocuSignConfig property using a
VB expression or variable.

To identify the variable type, in the Variable type field of the
Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities,
select DocuSignConfig, and click OK.

As of Forms Builder 3.4, the DocuSignConfig.TestMode
assignment (=true or =false) is no longer supported or func-
tional. Assign statements containing it can be deleted.

The only two properties for the DocuSignConfig
object that should ever bemodified in the workflow
definition are EmailSubject and ReturnUrl. The val-
ues for all the other properties are retrieved from the
DocuSign Settings saved in the database. Any modi-
fication done to the values for the other
DocuSignConfig properties in the workflow definition
will likely result in errors when the DocuSign portion
of the sequence is executed.

Val-
ida-
tionMessages

InOutArgument <Val-
ida-
tionMessageCollection>

No Specify a variable that can be used to capture validation
messages.

Forms Builder Version 3.6.1 444 Help Guide

GetDocuSignRecipientStatus
The GetDocuSignRecipientStatus activity retrieves the signature status of DocuSign recipients. The activity passes an
Envelope ID and receives the Envelope IDs as well as the signature status of each recipient. This activity allows for
conditional processing in the workflow so that if the document has not been successfully signed, the flow of the
workflow can be routed back to the state immediately prior to the DocuSign page ensuring that a document has
been electronically signed before proceeding with any additional processing in the workflow.

The activity will mainly be used for the primary signer (i.e., the first recipient in an array - Recipients(0)) who signs the
document within the rendered form. The activity is not applicable for additional signers who will sign via email.

Information about the DocuSign signature status is useful to handle all multi route workflows and to recover from
error conditions including connection loss. For example, when the connection to the DocuSign server is interrupted
and the signature status indicates that the document was not signed successfully, the user may be prompted to
retry the sequence.

The GetDocuSignRecipientStatus activity supports the following statuses:

Status Description

Completed Success path

Created This status would likely not be relevant in a workflow. The process would not proceed from DocuSign.

Declined This status occurs if a signer declines to sign a document. This is a specific case that can be handled at
the workflow designer's discretion (e.g., trigger an email or some other action)

Delivered This status is applicable as a status for additional signers.

Other Network/timeout case

The error message displayed when a DocuSign process fails due to network or timeout error can be con-
figured in the Forms Builder Settings workspace under the setting item "DocuSign Error Message Text".

Sent This status occurs if the user selects “Finish Later”. This status should probably be handled at the work-
flow designer's discretion.

Signed This status occurs briefly before the Completed status. The Signed status would likely not be relevant in
a workflow.

DocuSign Recipient Statuses

Multi Route Workflow Example

You could use the GetDocuSignRecipientStatus activity in a multi route workflow to select a path based on the
status returned by the activity.

For example, if the status is:

a. Declined, go to the end of the workflow, display a validation error, and do not update document status. The
document should remain in the student's Portal page because the document status would not have changed.

Forms Builder Version 3.6.1 445 Help Guide

b. Completed/Signed, go to the end of the workflow and update the document status. (Next path highlighted
below.)

c. Anything else, retry the workflow and go to the form prior to the DocuSign sequence. (Retry path high-
lighted below).

Note that the order of the multi route conditions is important:

l The first check is for a specific Declined status.
l The 2nd check is for a specific Completed status.
l The 3rd check ("Retry") is a catch-all for any status condition.

a. Declined path

The transition from the Default-Frame state to the End state contains a GetDocuSignRecipientStatus activity
and the following condition:

Recipients(0).Status.Equals(DocuSignRecipientStatus.Declined)

Forms Builder Version 3.6.1 446 Help Guide

This is followed by a CreateValidationItem activity that generates the following error message: "User selected
Decline to Sign, document status has not been updated."

Note: In a DocuSign sequence with multiple signers:

l If the additional signer declines to sign the document, the additional signer receives a second email can-
celing their access to sign the document.

l If the connection is interrupted and the additional signer does not sign the document upon receiving
the first email (interrupted), the additional signer will receive a second email and will be allowed to sign
(good retry).

b. Completed/Signed path

Forms Builder Version 3.6.1 447 Help Guide

The transition from the Default-Frame state to the End state contains a GetDocuSignRecipientStatus activity
and the following condition:

Recipients(0).Status.Equals(DocuSignRecipientStatus.Completed)

This is followed by GetSignedDocument and CreateDocument activities.

Forms Builder Version 3.6.1 448 Help Guide

Forms Builder Version 3.6.1 449 Help Guide

c. Retry path

The transition from the Default-Frame state to the CMC_Student_PersonalInfo state (this is the form prior to
the DocuSign sequence) contains a GetDocuSignRecipientStatus activity and the following condition:

Not Recipients(0).Status.Equals(DocuSignRecipientStatus.Completed)

Reuse the originally generated Envelope Id since DocuSign charges for each unique Envelope Id.

This is followed by a CreateValidationItem activity that generates the following information message: "Con-
nection to DocuSign was interrupted, please retry."

Forms Builder Version 3.6.1 450 Help Guide

Forms Builder Version 3.6.1 451 Help Guide

Properties

Property Value
Requi-
red

Notes

DisplayName String No Specify a name for the activity or accept the default.

DocuSignCon-
fig

InAr-
gument<DocuSignCon-
fig>

Yes Specify the DocuSignConfig property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignConfig, and click OK.

GetDocuSignRecipientStatus Properties

Forms Builder Version 3.6.1 452 Help Guide

Property Value
Requi-
red

Notes

DocuSignRe-
cipients

OutAr-
gument<DocuSignRe-
cipient[]>

No Specify the DocuSignRecipients array property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, select Array
of [T], navigate to Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignRecipient, and click OK.

EnvelopeId InArgument<String> Yes Specify the EnvelopeId as
DocuSignRequest.EnvelopeId.

Val-
ida-
tionMessages

InOutArgument <Val-
ida-
tionMessageCollection>

No Specify a variable that can be used to capture validation
messages.

Forms Builder Version 3.6.1 453 Help Guide

GetSignedDocument
The GetSignedDocument activity retrieves a signed document from DocuSign. The activity passes an Envelope Id
and receives the document for the passed Envelope Id in the response.

The GetSignedDocument activity should be placed in the Trigger area of the transition immediately following the
IFrame component (State) that will hold the signed document.

Properties

Property Value
Requi-
red

Notes

DisplayName String No Specify a name for the activity or accept the default.

GetSignedDocument Properties

Forms Builder Version 3.6.1 454 Help Guide

Property Value
Requi-
red

Notes

DocuSignCon-
fig

InAr-
gument<DocuSignCon-
fig>

Yes* Specify the DocuSignConfig property using a
VB expression or variable. This is the out argument
returned by the GetDocuSignConfig activity.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignConfig, and click OK.

* This property is new and required in Forms Builder 3.3
and later. It is optional for workflows created in prior ver-
sions of Forms Builder (backward compatibility).

DocuSignDoc-
ument

OutAr-
gument<DocuSignDocu-
ment>

Yes Specify the DocuSignDocument property using a
VB expression or variable.

To identify the variable type, in the Variable type field of
the Variables pane, select Browse for Types.... In the
"Browse and Select a .NET Type" window, navigate to
Cmc.Nex-
us.Form-
sBuilder.Contracts.Cmc.Nexus.FormsBuilder.Entities
, select DocuSignDocument, and click OK.

EnvelopeId InArgument<String> Yes Specify the EnvelopeId as
DocuSignRequest.EnvelopeId.

Val-
ida-
tionMessages

InOutArgument
<Val-
ida-
tionMes-
sageCollection>

No Specify a variable that can be used to capture validation
messages.

Forms Builder Version 3.6.1 455 Help Guide

LookupUser
The LookupUser activity takes the UserName from formInstance.UserName and returns the Student Id or Staff Id
in the UserId property.

l If a UserType value of 'Staff' is passed in the activity, a Staff Id is returned.

l If a blank UserType (default) is passed, a Student Id is returned.

The ability to retrieve the Staff Id exists in Forms Builder 3.5 or later.

The UserId is used by the GetEntity<> activity for the StudentEntity or StaffEntity to prepopulate forms where Stu-
dentEntity or StaffEntity fields are used.

https://help.campusmanagement.com/WF/Content/Workflow/GetEntity.htm

Forms Builder Version 3.6.1 456 Help Guide

Note: Optionally, you can add an If activity to the workflow to check for a valid Staff Id. For example, specify the
condition "staffid=0" and add a CreateValidationItem activity to the Then branch with a message like "This staff user
was not found."

Properties

Property Value
Require-
d

Notes

DisplayName String No Specify a name for the activity or accept
the default.

UserId OutArgument<Int32> Yes Specify the UserId using a VB expression
or variable.

UserName InArgument<String> Yes Specify the UserName using a
VB expression or variable.

Note: The property formIn-
stance.UserName contains the value for
the UserName.

LookupUser Properties

Forms Builder Version 3.6.1 457 Help Guide

Property Value
Require-
d

Notes

UserType InArgument<UserType> No Specify the UserType using a
VB expression or variable.

The namespace Cmc.Nex-
us.FormsBuilder.Entities.UserType
provides the option to select 'Staff' or 'Stu-
dent' as the UserType.

When the UserType property is left blank,
the default UserType is Student to ensure
backward compatibility.

If a staff sequence is accessed via cloud
services (Azure), youmust include a Look-
upUser activity with UserType=Staff in the
workflow to ensure proper authentication
and authorization for the staff role.

Val-
idationMessages

InOutArgument
<Val-
idationMessageCollection>

No Specify a variable that can be used to cap-
ture validationmessages.

Forms Builder Version 3.6.1 458 Help Guide

PrintUrlToPdf
The PrintUrlToPdf activity prints a URL to a PDF file. The URL attribute in this activity is referred to as the
"viewCreator" link. The link contains the forms, the Workflow Definition ID, and the RendererBaseUrl.

As of Forms Builder 3.5, the "viewCreator" feature is available for authenticated and anonymous sequences.

The PrintUrlToPdf activity can be placed in the Action area of a form (State) that requires DocuSign signatures. A Per-
sist activity should always precede the PrintUrlToPdf activity.

In Forms Builder 3.5 and later, the PrintUrlToPdf activity allows an empty URL input argument. The activity con-
structs the URL using:

l formInstance.RendererBaseUrl
l formInstance.WorkflowDefinitionId
l formInstance.FormsTraversed

This addresses the common scenario whereby all forms need to be included in the PDF by eliminating the need to
type every form name with perfect casing for the URL. Backward compatibility is maintained by allowing users to cre-
ate the URL and list of forms for the PDF output.

Workflow Example

The following images show segments of a workflow in a DocuSign scenario. In this example the Assign activity pre-
ceding the PrintUrlToPdf activity assigns the following URL:

formInstance.RendererBaseUrl + "#/viewCreator/" + formInstance.WorkflowDefinitionId.ToString +
"/forms=CMC_Student_Personal+Info"

(where CMC_Student_Personal+Info is the name of the form that contains the DocuSign components).

Note: Spaces in form names must be replaced with a “+” when setting viewCreator URL.

At start of the sequence, the workflow finds the student that was authenticated.

Forms Builder Version 3.6.1 459 Help Guide

Next, the workflow finds the document tracking record associated with the student. The LookupReferenceItem activ-
ity returns the document type that will be used as input for the LookupStudent Documents activity.

The LookupStudentDocuments activity returns an array of documents in variable docArray(0). The selected student
should only have one document.

Forms Builder Version 3.6.1 460 Help Guide

Assign activities set the document properties required for the SaveDocument activity.

Forms Builder Version 3.6.1 461 Help Guide

Usage Notes

Sequences with File Upload Component

If the sequence you want to capture using the PrintUrlToPdf activity contains a File Upload component and you
want to capture the image of file selection in the File Upload component, be sure to place the PrintUrlToPdf activity
before the GetAttachments activity, otherwise the file selection in the File Upload component will not be captured
in the PDF file.

Multi Page Forms

On any longer forms that spread across multiple pages when converted to PDF, drop an HTML component just prior
to the DocuSign control that appears close to page break and specify the following in the Class Property: forms_
builder_page_break. For more information, see Error Code "TAB_OUT_OF_BOUNDS".

PrintUrlToPdf Times Out

In Forms Builder 3.3 and later, the viewCreator wait is no longer timer-based, it is now event-based. Forms may need
to be re-saved, which will automatically update components to include a call to the event-based method "cmc-on-ini-

Forms Builder Version 3.6.1 462 Help Guide

tialized". If PrintUrlToPdf times out, especially when many documents are merged into a single PDF file, simply re-
save all forms in the sequence.

Incompatible Components

Do not use the CAPTCHA and Hyperlink components in forms that will be converted to PDF with the PrintUrlToPdf
activity.

AuxiliaryService

The PrintUrlToPdf activity relies on an auxiliary service that performs the conversion to PDF for Azure deployments.
This service is referenced in the <appSettings> section of the Renderer web.config file as highlighted below.

For on-premise deployments, the service is not required, and the UseRemotePDFConverterService value will be
set to false (default).

For Azure deployments, the UseRemotePDFConverterService value will be set to true, and value of the Aux-
iliaryServiceBaseUrl will be:

https://110001pdfrenderer.campusnexus.cloud/

This URL will be the same for all customers.

 <appSettings>
<add key="ConfigureCampusNexusWcfProxy" value="true" />
<add key="ConfigureCVueNexusWcfProxy" value="true" />
<!-- Following will be populated when Crm is enabled for Forms Builder -->
<add key="CmcNexusCrmWebUrl" value="http://<server>.campusmgmt.com:8090/" />
<add key="PaymentProvider" value="PayPal" />
<add key="AuxiliaryServiceBaseUrl" value="" />
<!-- Following should be set to true only in Azure environments where the Auxiliary service is installed and required.

-->
<add key="UseRemotePDFConverterService" value="false" />

 </appSettings>

Properties

Property Value Required Notes

DisplayName String No Specify a name for the activity or accept the default.

PrintUrlToPdf Properties

Forms Builder Version 3.6.1 463 Help Guide

Property Value Required Notes

Forms InArgument<String> No Optionally, specify a comma separated list of form
names to include in the PDF. You do not need to
replace spaces with plus signs in this list.

The Forms property value is ignored if the Url is not
empty, in other words, if the Url property is specified,
it takes precedence.

If both the Url and Forms properties are left empty, the
activity creates the Url automatically.

PdfDocument OutArgument<Byte
[]>

Yes Specify the DocuSignDocuments array using a
VB expression or variable.

To identify the variable type, in the Variable type field
of the Variables pane, select Browse for Types.... In
the "Browse and Select a .NET Type" window, select
Array of [T], navigate tomscorlib [4.0.0.0]
> System, select Byte, and click OK.

Forms Builder Version 3.6.1 464 Help Guide

Property Value Required Notes

Url InArgument<String> No Forms Builder 3.5 and later allows an empty URL
input argument. The activity constructs the Url using:

l formInstance.RendererBaseUrl
l formInstance.WorkflowDefinitionId
l formInstance.FormsTraversed

This addresses the common scenario whereby all
forms need to be included in the PDF by eliminating
the need to type every form namewith perfect casing
for the Url. Backward compatibility is maintained by
allowing users to create the Url and list of forms for the
PDF output.

The activity constructs the Url only if both the Forms
and Url properties are left blank. If the Url property is
specified, it takes precedence.

Specify the Url using a VB expression or variable.

Examples

The following URL indicates a PDF that is created for
a form named "CMC_Student_Personal Info":

formInstance.RendererBaseUrl +
"#/viewCreator/" + formIn-
stance.WorkflowDefinitionId.ToString + "/form-
s=CMC_Student_Personal+Info"

The following URL indicates a PDF that is created for
multiple forms in a single document. Note the comma
separated list after "forms=".

formInstance.RendererBaseUrl +
"#/viewCreator/" + formIn-
stance.WorkflowDefinitionId.ToString + "/form-
s=CMC_Student_Personal+Info,CMC_Student_
Additional+Info”

Note: If mistakes aremade in the form name for the
URL, the followingmessage will be in found in the log,
but no indication of failure will be seen in the rendered
sequence (no toaster popup), and the val-
idationMessages argument will not be set. Addi-
tionally, the PDF file will be created but will contain
only the error message.

Form Form_Name does not exist in the
database.
Unable to get Form data from database

Forms Builder Version 3.6.1 465 Help Guide

Property Value Required Notes

ValidationMessages InOutArgument
<ValidationMessage
Collection>

No Specify a variable that can be used to capture val-
idationmessages.

Page Breaks in PDF Files

The following styles determine the default PDF pagination scheme. They can be modified if some other pagination
scheme is needed. Save your changes to a custom style sheet. For more information, see Custom Content and Cus-
tom Styles.

@media print {
#viewCreatorForm > div:not(:first-child) {
page-break-before: always;
}
}

/* The above @media print does not address page breaks within a long form. DocuSign may reject PDF files where
DocuSign signatures cross page boundaries in the PDF files, usually with an error like "TAB_OUT_OF_BOUNDS".
Adding appropriate pages breaks is best accommodated by adding an HTML component in the form anywhere
before a page break is required. Leave the HTML control empty but add the unique class name on the Class Prop-
erty Setting that is used below: forms_builder_page_break. Then the following will force a page break in the PDF file
before the control.
*/
@media print {
.forms_builder_page_break {
page-break-before: always;
}
}

The following css code would insert page breaks after a footer or before an h1 heading.

@media print {
footer {page-break-after: always;}
}

— OR —

@media print {
h1 {page-break-before: always;}
}

Forms Builder Version 3.6.1 466 Help Guide

TranslateText
The TranslateText workflow activity translates text that originates in a workflow and needs to be displayed to the
user. The activity is not used for translations of text that originates from the forms created in Forms Builder.

The TranslateText activity performs server-side translations for text strings in the Workflow Composer application
using C# code and database queries. A precondition for this process is that the text to be translated (OriginalText)
exists in the Forms Builder database and has been translated using the Gettext tools (.pot and .po files). See Inter-
nationalization and Localization in Forms Builder.

Use cases:

l Translation of messages created using CreateValidationItem activities (see Custom Validations)

Prerequisites: The custom validation messages are known, have been entered in a .pot file, have been trans-
lated, and the .po files have been imported into Forms Builder. The text string specified in the OriginalText
field of the TranslateText activity must match the text of the custom validation message exactly.

l Translation of individual values returned from other workflow activities

When workflow activities such as LookupReferenceItem are used to retrieve values from the database, these
values can be entered in a .pot file, translated, and imported into Forms Builder via .po files. TranslateText
activities can then be used to translate individual values as users are completing the form sequences.

Note: To provide translations for arrays such as text strings returned by OData queries in the selection lists,
refer to Steps to Localize Sequences.

The image below shows the property settings for a TranslateText activity followed by a CreateValidationItem activity
that uses the variable "TransText". The variable is defined as the Translation out argument in the TranslateText activ-
ity. The OriginalText argument "Complete the form before Clicking Next." will be translated based on the default
Locale when an invalid condition causes the validation message to be displayed.

Forms Builder Version 3.6.1 467 Help Guide

Properties

Property Value Required Notes

CultureCode InArgument<String> No The CultureCode is optional.

If the CultureCode is not specified, by default
the activity will use the formInstance.Locale
value. The Locale component, which is typ-
ically placed on first form of the sequence,
sets the formInstance.Locale value.

You can specify a CultureCode value in the
TranslateText activity to override the formIn-
stance.Locale value on any form or to assign
the CultureCode if the Locale component is
not used.

DisplayName String No Specify a name for the activity or accept the
default.

OriginalText InArgument<String> Yes Specify the OriginalText value.

The TranslateText activity takes the Ori-
ginalText value and returns a Translation
value that is retrieved from the Forms Builder
database. TheOriginalText valuemust
match a string in the database table exactly.

TranslateText Properties

Forms Builder Version 3.6.1 468 Help Guide

Property Value Required Notes

Translation OutArgument<String> No Specify the Translation value using a
VB expression or variable.

If the Translation is not found, the Ori-
ginalText value will be returned in the out
argument. You can use the log file in debug
mode and search for "No Translation found"
to determine which items were not trans-
lated.

ValidationMessages InOutArgument <Val-
idationMessageCollection

No Specify a variable that can be used to cap-
ture validationmessages.

Forms Builder Version 3.6.1 469 Help Guide

VerifyCardPayment
The VerifyCardPayment activity is used in workflows for sequences that contain a form with the Credit Card Pay-
ment component. The activity validates that the information received when the payment was processed matches
the payment details for the provided transaction identifier that was returned when the payment was processed. A
payment can be processed using the ACI, IATS, or PayPal payment gateways.

If the VerifyCardPayment activity is missing in the workflow for the sequence that contains the Credit Card Payment
component, the transaction identifier will be null, and the form with the Credit Card Payment component will show a
validation message or return an "event not verified" error.

The placement of the VerifyCardPayment activity must be in theNext transition from the form that contains the
Credit Card Payment component.

The transition out of the form that has the Credit Card Payment component has to keep its the default name, i.e.,
“Next”. Do not change this default for this particular form. When receiving the post back from the payment site,
Forms Builder automatically transitions forward and looks for “Next” on the form.

The VerifyCardPayment activity does not check for form validation errors. If errors occur, the activity will return to
same form, but the state of the form sequence and payment are not guaranteed. You need to ensure that there are
no input validation errors prior to the user selecting the "Make Payment" link.

Capture validation errors using an If activity following the VerifyCardPayment activity. Specify the Condition for the
If statement as: formInstance.ValidationMessages.HasErrors.

Forms Builder Version 3.6.1 470 Help Guide

l In the Then branch, add a LogLine (e.g., Text = "Verify payment result: " & formIn-
stance.ValidationMessages(0).Message) and a CreateValidationItem activity that displays a message to
the user.

l In the Else branch, place a LogLine activity that records the success of the VerifyCardPayment activity in the
log, e.g., "Payment verified using activity."

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

The Condition area of the Next transition contains the expression Not formIn-
stance.ValidationMessages.HasErrors. The Action area leads to the next form in the sequence, in this case, a pay-
ment confirmation form.

Forms Builder Version 3.6.1 471 Help Guide

Forms Builder Version 3.6.1 472 Help Guide

Properties

Name Value
Require-
d

Notes

DisplayName String No Specify a name for the activity or accept the default.

PaymentAmount InAr-
gument<Decimal>

Yes Specify the amount to be paid using a credit card,
for example, 45.00d.

If you specify a binding to an entity in the database,
for example, depositEntity.Amount, make
sure that the workflow for the form sequence con-
tains amatching CreateEntity<> activity, for
example, CreateEntity<DepositEntity>.

Pay-
mentTransactionId

InArgument<String> No Specify the transaction identifier associated with
the payment form instance: formIn-
stance.PaymentInfo.TransactionId

ValidationMessages InOutArgument
<ValidationMessage
Collection>

No Specify a variable that can be used to capture val-
idationmessages.

You can either set this value to formIn-
stance.ValidationMessages to show it to the
end user or assign it to a local variable and cus-
tomize formInstance.ValidationMessages.

VerifyCardPayment Properties

Forms Builder Version 3.6.1 473 Help Guide

WaitForFormBookmark
The WaitForFormBookmark activity creates a bookmark so that the workflow can resume after form user input is
obtained. This activity is also responsible for passing data (as arguments) back and forth between forms and work-
flow.

WaitForFormBookmark is used in all form/state transitions. By default, when you create a form sequence, the Trig-
ger sections of all transitions will already contain WaitForFormBookmark activities with default Display Names for
the Next and Back buttons, and the transitions in the workflow will be labeled "Next" and "Back" accordingly.

Forms Builder Version 3.6.1 474 Help Guide

You must specify the Transition Type in the WaitForFormBookmark activities if you change the default button
labels. For example, to change the label of the "Back" button to "Previous" and the "Next" button to "Continue", you
would specify the WaitForFormBookmark properties as shown below.

Display Order is not required if you are changing the Transition Type. If Display Order is left at the default of 0 (or all
values are the same), the sorting of buttons on the form is alphabetical. You can use this property to give the but-
tons a sequential (left to right) order.

Forms Builder Version 3.6.1 475 Help Guide

Note: WaitForFormBookmark clears validation messages. Therefore, it is necessary to add a CreateValidationItem
activity after the bookmark in the transition. For more information, see Custom Validations.

If you add a new form (i.e., State activity) with new transitions to a workflow, ensure that a WaitForFormBookmark
activity is added to the Trigger area of every transition. The default name for a new transition will be "T1". You can
change the name of the transition as needed. The Display Name of the WaitForFormBookmark activity will be the
label of the button on the form.

Properties

Property Value Required Notes

Display Name String Yes Specify a name for the activity or accept the default. The Display
Name shouldmatch the button name on the form.

When the default Display Names "Back" and Next" are used, the
Display Order and Transition Type properties are not required.

If you customize the button labels, youmust specify the Display
Order and Transition Type properties for eachWaitForFormBook-
mark.

Display Order Int32 No When a form uses the default button labels "Back" and Next",
the Display Order value is 0 (default).

If you customize the button labels, specify the order of the but-
tons from left to right using increasing integer values from left to
right for eachWaitForFormBookmark.

Transition
Type

TransitionType No When a form uses the default button labels "Back" and Next",
the Transition Type value is "Default".

If you customize the button labels, specify the direction of the
transition by selecting the Transition Type values "MoveBack" or
"MoveForward" as appropriate for eachWaitForFormBookmark.

WaitForFormBookmark Properties

Note: When the user clicksNext button, if the contents of the next rendered form or the activities during a trans-
ition have not completed, the spinner that signifies that the page is currently being processed is displayed in the cen-
ter of the form so that it is clearly visible on the screen and the form does not appear to be frozen.

https://help.campusmanagement.com/WF/Content/Workflow/CreateValidationItem.htm

Forms Builder Version 3.6.1 476 Help Guide

State Machine Workflows
When you save a form sequence, Forms Builder automatically creates a new state machine workflow definition. The
new workflow definition contains a state for each form included in the sequence. The order in which the states
appear in the workflow definition match the order in which the forms were dropped onto the Layout pane when cre-
ating the sequence in Sequence Designer.

You can access the workflow using Workflow Composer For more information, see Open the Workflow for a
Sequence. You can then edit, save, and publish the workflow using Workflow Composer.

State machine workflows provide a modeling style with which you can model your workflow in an event-driven man-
ner. A StateMachine activity contains the states and transitions that make up the logic of the state machine and can
be used anywhere an activity can be used. To create a state machine workflow, States are added to a StateMachine
activity, and Transitions are used to control the flow between states.

States
A state machine workflow must have one and only one initial state, and at least one final state. Each state that is not
a final state must have at least one transition.

The following image shows a state machine workflow with five states and multiple transitions. The initial state
named Welcome represents the first state in the workflow. This is designated by the line leading to it from the Start
node. The final state named End represents the point at which the workflow is completed.

Forms Builder Version 3.6.1 477 Help Guide

l To add a state to a workflow, drag the State activity from the State Machine section of the Toolbox and drop
it onto a state machine workflow in the Designer pane.

Forms Builder Version 3.6.1 478 Help Guide

l To configure a state as the Initial State, right-click the State in the Designer pane and select Set as Initial
State. If there is no current initial state, the initial state can be designated by dragging a line from the Start
node to the state.

l To add a final state to a workflow, drag a FinalState activity from the State Machine section of the Toolbox
and drop it onto a state machine workflow in the Designer pane. A final state is a state that has its IsFinal
property set to true, has no Exit activity, and no transitions originating from it.

A state can have an Entry and an Exit action. (A state configured as a final state only has an entry action). When a
workflow instance enters a state, any activities in the Entry action execute. When the Entry action is complete, the
triggers for the state’s Transitions are checked. When a transition to another state is confirmed, the activities in the
Exit action are executed. After the Exit action completes, the activities in the transition’s action execute, and then the
new state is transitioned to, and its Entry actions are executed.

Double-click the icon of a State activity to view its details.

The following image shows the details of a State activity.

Forms Builder Version 3.6.1 479 Help Guide

Notes

l When debugging a state machine workflow, breakpoints can be placed on the root state machine activity and
states within the state machine workflow. Breakpoints may not be placed directly on the transitions, but they
may be placed on any activities contained within the states and transitions.

l When editing a workflow definition, keep in mind that a state in the state machine workflow equates to a
form within the sequence. The name of a State must match the name of a Form to be rendered properly. If
Renderer encounters a State in workflow definition that does not match name of any Form created in Form

Forms Builder Version 3.6.1 480 Help Guide

Designer, an error similar to the following will be generated.

Transitions
All states must have at least one transition, except for a final state which may not have any transitions. Transitions
may be added after a state is added to a state machine workflow, or they can be created as the State activity is
dropped into the Designer pane.

To add a state and create a transition in one step, drag a State activity from the State Machine section of the Tool-
box and hover it over another State in the Designer pane. When the dragged State is over another State, four tri-
angles will appear around the other State. If the State is dropped onto one of the four triangles, it is added to the
state machine and a transition is created from the source State to the destination State.

To create a transition after a state is added, drag a line from one state to another state. The yellow box indicates the
start point of the line.

To edit the transition details, double-click the transition line.

A transition may have a Trigger, a Condition, and an Action.

A transition’s Trigger is checked when the transition’s source state’s Entry action is complete. Typically, the Trigger is
an activity that waits for some type of event to occur, but it can be any activity, or no activity at all. Once the Trigger
activity is complete, the Condition, if present, is evaluated.

l If there is no Trigger activity, then the Condition is immediately evaluated.

l If the Condition evaluates to false, the transition is cancelled, and the Trigger activity for all transitions from
the state are rescheduled.

l If there are other transitions that share the same source state as the current transition, those Trigger actions
are cancelled and rescheduled as well.

l If the Condition evaluates to true, or there is no condition, then the Exit action of the source state is executed,

Forms Builder Version 3.6.1 481 Help Guide

and then the Action of the transition is executed. When the Action completes, control passes to the Target
state.

The following image shows the transition designer for a transition with aNext trigger that was automatically inserted
by Forms Builder when the state machine workflow was created. Forms Builder will also insert Back triggers to
enable users to navigate forward and back through a sequence.

Note that theNext and Back triggers created by Forms Builder areWaitForFormBookmark activities. To add this
trigger to a workflow, drag a WaitForFormBookmark activity from the Toolbox to the Designer pane. When you
modify an existing workflow to add new transitions, be sure to add a WaitForFormBookmark activity as a trigger.

Forms Builder Version 3.6.1 482 Help Guide

Shared Trigger Transitions
Transitions that share a common trigger are known as shared trigger transitions. Each transition in a group of shared
trigger transitions has the same trigger, but a unique Condition and Action. An example for shared trigger transitions
is a form with multiple value selection options which routes to different sub forms depending on a value selection
(see Multi Route Forms).

To create a share trigger transaction, drag a line from the connection point (yellow circle) of the trigger.

To add additional actions to a transition and create a shared transition, click the yellow circle that indicates the start
of the desired transition and drag it to the desired state. The new transition will share a same trigger as the initial
transition, but it will have a unique condition and action. Shared transitions can also be created from within the
transition designer by clickingAdd shared trigger transition at the bottom of the transition designer (see trans-
ition designer image above), and then selecting the desired target state from theAvailable states to connect
drop-down.

Forms Builder Version 3.6.1 483 Help Guide

Note: If the Condition of a transition evaluates to false (or all of the conditions of a shared trigger transition eval-
uate to false), the transition will not occur and all triggers for all the transitions from the state will be rescheduled.

Term Description

State The basic unit that composes a statemachine. A statemachine can be in one state at any particular
time.

Entry Action An activity which is executed when entering the state.

Exit Action An activity which is executed when exiting the state.

Transition A directed relationship between two states which represents the complete response of a state
machine to an occurrence of an event of a particular type.

Shared Trans-
ition

A transition that shares a source state and trigger with one or more transitions but has a unique con-
dition and action.

Trigger A triggering activity that causes a transition to occur.

Condition A constraint whichmust evaluate to true after the trigger occurs in order for the transition to complete.

Transition
Action

An activity which is executed when performing a certain transition.

Conditional
Transition

A transition with an explicit condition.

Self-transition A transition which transits from a state to itself.

Initial State A state which represents the starting point of the statemachine.

Final State A state which represents the completion of the statemachine.

State Machine Terminology

Forms Builder Version 3.6.1 484 Help Guide

Multi Route Forms
In previous versions of Forms Builder, the Multi Route Rule was used to control the flow of forms and sequences
dynamically based on a user's selection in a form field. The Multi Route Rule enabled you to define which form or
sequence was displayed when a user selected a specific value in a form field.

In Forms Builder version 3.x the multi route functionality is implemented using sequence workflows. For general
information about workflows created through Sequence Designer, see State Machine Workflows.

Multi route sequences consists of multiple forms, at minimum, a main form and two or more sub forms linked to
the options available on the main form.

Example

The main form allows the user to select a citizenship status, e.g., US Citizen or Eligible Non-Citizen. If US Citizen is
selected, a sub form presents a text field to enter the Social Security Number. If Eligible Non-Citizen is selected, a sub
form presents field to enter the Alien Number.

Step 1: Create forms for the sequence
1. Browse to Form Designer to create and save the main form. The main form contains the field(s) that trigger

the branching into multiple routes.

In our example the value selected in the Student - Citizenship drop-down list will trigger the branching.

2. In Form Designer, create and save the sub forms. A sub form is required for each route.

Forms Builder Version 3.6.1 485 Help Guide

In our example one sub form (form A) is created for the input of the social security number (SSN). This form is
displayed when the user selects US Citizen in the Student - Citizenship Status drop-down list on the main
form.

In our example a second sub form (form B) is created for the input of the Alien Number. This form is dis-
played when the user selects Eligible Non-Citizen in the Student - Citizenship Status drop-down list on the
main form.

When all forms for all possible routes of a multi route sequence have been created, continue with Step B.

Forms Builder Version 3.6.1 486 Help Guide

Step 2: Build the sequence
1. Browse to Sequence Designer and drag the main form and the sub forms to the Layout pane.

Note: The order of the sub forms in the Layout pane of the Sequence does not matter as long as they are
grouped together after the main form is added. The branching/flow of the conditional sub forms will be spe-
cified when editing the workflow definition after the initial sequence is saved.

Please note, however, that while workflow determines the order of the forms, when the initial workflow is cre-
ated, the order of the forms in the sequence is used to create the order of states in the state machine work-
flow. It is easier to sort the sub forms in Sequence Designer than to change the order of states in the
workflow after the sequence is created.

2. Save the sequence with all required forms.

3. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

Step 3: Define transitions in Workflow Composer
1. In Workflow Composer double-click on Next transition from the main form to form A.

Note: You can move the icons for states and transitions within the StateMachine sequence to get a clearer
view of the links between the items.

When editing a workflow definition, keep in mind that a state in the state machine workflow equates to a
form within the sequence. The name of a State must match the name of a Form to be rendered properly. If
Renderer encounters a State in workflow definition that does not match name of any Form created in Form

Forms Builder Version 3.6.1 487 Help Guide

Designer, an error similar to the following will be generated.

In our example the main form is named StudentCitizenship - MultiRoute.

Forms Builder Version 3.6.1 488 Help Guide

The transition is expanded and displays Trigger, Condition, and Action fields.

2. In theCondition field for the Next-SSN transition, enter the decision input property derived from the main
form. In our example the condition is the US Citizen value selected in the Citizenship Status field, i.e., pro-
spectInquiryEntity.Student.CitizenId.Value = 1.

3. At bottom of transition, click Add Shared Trigger Transition" and select form B. The name of form B is
inserted into the Destination field.

4. When created, change the default label on the transition from "T1" to "Next-Alien".

5. In theCondition field for the Next-Alien transition, enter the decision input property derived from the main
form. In our example the condition is the Eligible Non-Citizen value selected in the Citizenship Status field, i.e.,
prospectInquiryEntity.Student.CitizenId.Value = 3.

6. Add a condition for each transition based on decision input property in the main form (i.e., pro-
spectInquiryEntity.Student.CitizenId.Value = 1 and prospectInquiryEntity.Student.CitizenId.Value = 3).

Forms Builder Version 3.6.1 489 Help Guide

At this point shared transition is created for the Next button on the main form. Based on the selected Cit-
izenId.Value value, the Next button will route the user to form A or form B.

Forms Builder Version 3.6.1 490 Help Guide

7. In the breadcrumbs at top of Designer window, select your sequence name (leftmost item). The Designer
displays the entire StateMachine workflow view.

8. Select theNext transition on form A to form B and move the endpoint to the End state.

Forms Builder Version 3.6.1 491 Help Guide

The Next transition on form A now points to the End state instead of form B.

9. Select theBack transition on form B to form A and move the endpoint to themain form.

Forms Builder Version 3.6.1 492 Help Guide

The Back transition on form B now points to the main form instead of form A.

Note: If it is necessary to add new transitions, be sure to drag/drop the WaitForFormBookmark activity to
the Trigger section of the transition.

10. Publish the updated workflow for the multi route form sequence. Be sure to select the Enable This Work-
flow option.

Forms Builder Version 3.6.1 493 Help Guide

11. Click OK on the Publish Succeeded message.

The updated version of the sequence workflow is now enabled in your test environment.

Step 4: Render and test the sequence
1. Browse to the Forms Renderer site and select the sequence just created.

The main form is displayed.

2. Fill out the form and select the value that takes the user to form B and click Next.

Form B is displayed.

3. Click theBack button on form B.

Forms Builder Version 3.6.1 494 Help Guide

The main form is displayed.

4. Modify the value on the main form and select the value that takes the user to form A and click Next.

Form A is displayed.

5. Fill out the form and click Next.

The final form/end state is displayed with no buttons.

Forms Builder Version 3.6.1 495 Help Guide

Update a Form After Creation of a Sequence
When a new sequence is saved, and the workflow definition is initially created, arguments for all entities referenced
within all forms in the sequence will be automatically added in the workflow definition.

However, when a property associated with an entity is added to a form, and the sequence initially did not have any
properties for that entity, arguments for that entity must be manually added to the workflow definition.

When a form is modified (fields added or deleted) and saved, the changes will be reflected in existing sequences that
contain that form.

Adding an Entity to a Workflow
1. In Form Designer, create a form with several fields from the Prospect Inquiry entity and save the form.

2. In Sequence Designer, create a sequence using the form and save the sequence.

3. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

Note that an argument was created for the Prospect Inquiry entity.

Forms Builder Version 3.6.1 496 Help Guide

4. In Form Designer, add a field from another entity, e.g., Student Previous Education, and save the form.

5. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence. Note that no argument was created for the Pending Applicant Previous Education entity.

6. In Workflow Composer, create an argument for entity that was added to the form by specifying the Name,
Direction (In/Out), and Argument type.

Note: The casing of argument names is significant. Use camel case as shown in the examples below.

Forms Builder Version 3.6.1 497 Help Guide

7. Save the workflow.

When editing a workflow definition, keep in mind that a state in the state machine workflow equates to a form
within the sequence. The name of a State must match the name of a Form to be rendered properly. If Renderer
encounters a State in workflow definition that does not match name of any Form created in Form Designer, an error
similar to the following will be generated.

Forms Builder Version 3.6.1 498 Help Guide

Link a Portal Account to a Student Record
Note: This procedure is applicable only for environments that use the CampusNexus Student product.

When applicants or students create new accounts via the CMCPortalSTS (see Renderer Authentication), a wpUserId
(web portal user Id) is generated for them alongside the User Name they choose. The wpUserId must be linked to
the syStudent record in the CampusNexus Student database.

In Forms Builder 3.1 and later, the workflow activity SaveStudentPortalUserAssociation (see Workflow Composer
Help) is used to create a wpUserRelation record in the Portal database. The wpUserRelation record estab-
lishes a relation between a wpUser record in the Portal database and an syStudent record in the CampusNexus
Student database.

The following example shows how the SaveStudentPortalUserAssociation activity can be used in a workflow for a
form sequence:

1. A sequence consisting of the following forms is created:

l Welcome
l Personal Information (Pers. Info)
l Additional Information (Add. Info)
l End

The StateMachine workflow for the sequence contains the forms (States) and transitions (Next, Back).

https://help.campusmanagement.com/WF/Content/Workflow/SaveStudentPortalUserAssociation.htm

Forms Builder Version 3.6.1 499 Help Guide

2. Add a CreateEntity activity in the Entry area of the Welcome form to create a propectInquiryEntity.

Forms Builder Version 3.6.1 500 Help Guide

3. In the Action area of the Next transition from the Pers. Info form, set the Condition to True and add a
Sequence with Assign activities to capture theprospectInquiryEntity attributes that are entered on the
form, e.g., Student.SchoolStatusId, LeadDate, LeadTypeId, AssignedAdmissionsRepId, and LeadSourceId.

Forms Builder Version 3.6.1 501 Help Guide

4. Add a SaveEntity activity below the Assign activities to save the prospectInquiryEntity record with the
assigned values.

This activity creates a wpUser record in the Portal database.

Forms Builder Version 3.6.1 502 Help Guide

5. Add an If activity below the SaveEntity activity.

l In the Condition field, specify the following to capture form errors:

o Not formInstance.ValidationMessages.HasErrors

l In the Then branch, add a SaveStudentPortalUserAssociation activity with the following properties:

o PortalUserName = formInstance.UserName
o StudentId = prospectInquiryEntity.StudentId
o ValidationMessages = formInstance.ValidationMessages

l In the Else branch, add a LogLine activity to write the following error message to the log:

o "Prospect Save has errors "&formInstance.ValidationMessages(0).Message

We recommend setting the Level value to Information for any LogLine or LogObject activities. See
Best Practices for Logging and Logging in Azure

6. In the Entry area of the Add. Info form, add a Sequence with a GetEntity activity.

Forms Builder Version 3.6.1 503 Help Guide

l In theGetEntity activity, specify the following properties:

o EntityId = propspectInquiryEntity.StudentId
o Result = studentEntity

7. In the Action area of the Next transition from the Add. Info form, set the Condition to True and add a
Sequence with two Assign activities followed by a SaveEntity activity.

Forms Builder Version 3.6.1 504 Help Guide

l In the first Assign activity, specify the following:

o studentEntity.StudentAddressAssociation = Cmc.Nex-
us.Common.Entities.StudentAddressAssociation.IgnoreInStudentAssociation.

l In the second Assign activity, specify the following:

o studentEntity.EntityState = Cmc.Core.EntityModel.EntityState.Modified

l In the SaveEntity activity, specify the following:

o Entity = studentEntity
o ValidationMessages = formInstance.ValidationMessages.

The SaveEntity activity creates a syStudent record in the CampusNexus Student database.

Forms Builder Version 3.6.1 505 Help Guide

Create, Get, and Save Entity Activities
When a form sequence is created and saved, Sequence Designer automatically creates a workflow definition con-
taining In/Out arguments for all entities that are referenced in the forms within the sequence. The arguments are
used to pass data between Forms Builder and Workflow Composer. The argument names match the entity types.
The parameters associated with the entities are not initialized by default. The entities associated with the arguments
are not automatically created in the workflow. It is the responsibility of the user building the form to add the neces-
sary CreateEntity<>, GetEntity<>, and SaveEntity<> activities in appropriate locations of the workflow definition.
Appropriate locations are Transitions (e.g., Next, Submit, Back) and States (i.e., forms) in the StateMachine work-
flow.

CreateEntity<>
The CreateEntity<> activity is usually placed in the Entry Sequence of the first State (form) in a StateMachine work-
flow. Often, one or more Assign activities follow the CreateEntity<> activity.

GetEntity<>
The GetEntity<> activity can be used to retrieve data from the database. The activity could be placed on the Wel-
come form so that previously entered data prefills the form fields when the form is displayed.

Forms Builder Version 3.6.1 506 Help Guide

The following table illustrates the behavior of Forms Builder and Workflow Composer depending on the user scen-
ario. The StudentEntity and ContactEntity are used as examples in the table; however, the concept applies to other
entities as well.

User scenario

Which
workflow
activity is
needed in
the first
form?

Is the FormIn-
stance.UserInfo
property populated
in Workflow Com-
poser?

Is the Login
field pop-
ulated on
the form?

Notes

CampusNexus Student

Anonymous user CreateEntit-
y — Stu-
dentEntity

— NA — — NA —

New user creating an
account

CreateEntit-
y — Stu-
dentEntity

Yes Yes Add an Assign activity to
assign stu-
dentEntity.FirstName =
formIn-
stance.UserInfo.FirstName

The FormInstance.UserInfo
comes from the login account
information.

The same assignment can be
done for all other account fields
in FormInstance.UserInfo to
prepopulate those fields for Stu-
dentEntity in form.

Forms Builder Version 3.6.1 507 Help Guide

User scenario

Which
workflow
activity is
needed in
the first
form?

Is the FormIn-
stance.UserInfo
property populated
in Workflow Com-
poser?

Is the Login
field pop-
ulated on
the form?

Notes

Existing user logged in GetEntity —
Stu-
dentEntity

Yes Yes

CampusNexus CRM

Anonymous user CreateEntit-
y —
ContactEnt-
ity

— NA — — NA —

New user registering as a co-
ntact

GetEntity —
ContactEnt-
ity

No (get data from the
ContactEntity)

No by
default (get
data from
the
ContactEnti-
ty)

Existing user logged in GetEntity —
ContactEnt-
ity

No (get data from the
ContactEntity)

No by
default (get
data from
the
ContactEnti-
ty)

SaveEntity<>
The SaveEntity<> activity can be placed in the Trigger or Action area of the Next transition that leads to the End
State. A SaveEntity<> activity must be paired with each CreateEntity<> or GetEntity<> activity to ensure that the
data collected in the form sequence is persisted to the database.

Forms Builder Version 3.6.1 508 Help Guide

See Workflow Help for more details on the CreateEntity<>, GetEntity<>, and SaveEntity<> activities.

Best Practice to Prevent DbUpdateConcurrency Exceptions
A DbUpdateConcurrency error occurs when an attempt is made to update an instance of an entity via a Save activ-
ity, but that instance has been modified by another user in the time from when the instance was initially retrieved in
the workflow to the point in time when the Save activity executes.

Example of a DbUpdateConcurrency exception in a Renderer log file:

https://help.campusmanagement.com/WF/Content/Workflow/welcome.htm

Forms Builder Version 3.6.1 509 Help Guide

2018-02-27 13:30:16.7645 54 Error Cmc.Nexus.Crm.Workflow.SaveDocument Sys-
tem.ServiceModel.FaultException`1[System.ServiceModel.ExceptionDetail]: Store update, insert, or delete statement
affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were loaded. See
http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic concurrency
exceptions. (Fault Detail is equal to An ExceptionDetail, likely created by IncludeExceptionDetailInFaults=true, whose
value is: System.Data.Entity.Infrastructure.DbUpdateConcurrencyException: Store update, insert, or delete state-
ment affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were
loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic
concurrency exceptions. ----> System.Data.Entity.Core.OptimisticConcurrencyException: Store update, insert, or
delete statement affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities
were loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optim-
istic concurrency exceptions. at Sys-
tem.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.ValidateRowsAffected(Int64 rowsAffected,
UpdateCommand source) at System.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.Update() at Sys-
tem.D...).

The best practice we recommend to avoid this error is to add a TransactionScope activity to the workflow. Use the
defaults of IsolationLevel = Serializable, and a timeout of 1 minute.

Within that TransactionScope, add aGetEntity activity to retrieve the instance of the entity prior to the execution
of the SaveEntity activity. Any property values that need to be updated prior to saving can be done so via Assign
statements right after the Get activity and right before the Save activity.

A transaction locks the database to give the workflow a chance to read and update with no other process sim-
ultaneously doing the same. Read about the other less aggressive isolation levels as they may be adequate for the
purpose based on the type of updates being done and produce less overhead. Google “TransactionScope Isol-
ationLevel Activities”. A “RepeatableRead” may be sufficient.

This pattern will eliminate any chance that another user will update this record in between the execution of the Get
and Save activities within the workflow.

Forms Builder Version 3.6.1 510 Help Guide

Custom Validations
The workflow for a form sequence provides the ability to perform custom validations on the form input. Custom val-
idations using theCreateValidationItem workflow activity can check for valid data input above and beyond the
built-in validations for form fields within Forms Builder.

Single Validation
The workflow for a Request for Information (RFI) sequence includes a LookupReferenceItem activity that checks for
a Reference Item Type of "Lead Source" with a Reference Item value of "Auto Shows". The out argument of the activ-
ity is a variable named "InvalidLead".

The "InvalidLead" variable is used in an If activity with a condition of "myLeadSource.Equals(invalidLead.Id)". If this
condition is true (i.e., the lead is associated with a Reference Item value of "Auto Shows"), a custom validation mes-
sage is displayed. This message is triggered by a CreateValidationItem activity, where the Messages variable is set to
"formInstance.ValidationMessages".

The validation item can be designed to use a message type of Error, Information, or Warning. On the rendered form,
the message types are displayed as follows:

https://help.campusmanagement.com/WF/Content/Workflow/LookupReferenceItem.htm
https://help.campusmanagement.com/WF/Content/Workflow/CreateValidationItem.htm

Forms Builder Version 3.6.1 511 Help Guide

Message Type Message Display in Renderer Next Transition allowed?

Error Red toaster popup No, user must correct the form input

Warning Orange toaster popup Yes

Information Blue toaster popup Yes

Validation Message Types

For form input that meets the validation criteria (no errors) specify "Not formIn-
stance.ValidationMessage.HasErrors" in the Next Condition field of the form transition. This allows users to con-
tinue to the subsequent form.

Forms Builder Version 3.6.1 512 Help Guide

Placement of the Custom Validation
Place the custom validation sequence in the Trigger of the WaitForBookmark activity (labeled "Next") from the form
on which you want to do the validation (Source: "RFI Basic" form in our example). The custom validation message
will be displayed before the transition to the subsequent form (Destination: "Admission" form in our example).

Forms Builder Version 3.6.1 513 Help Guide

Note: The WaitForBookmark activity clears any previous validation items. Therefore, the custom validation should
be done after the transition from the form that is being validated.

Multiple Validations
You can also use a workflow to create multiple validations for a particular form in a sequence.

If any Forms Builder or CampusNexus Student activity is placed between two CreateValidationItem activities, a local
variable must be created for the ValidationMessages in-argument of that activity instead of the usual formIn-
stance.ValidationMessages argument. This is necessary because the activity will overwrite any already existing Val-
idationMessages in formInstance.ValidationMessages if that is supplied as an argument.

In our example, a GetAttachments activity is placed between two validations with CreateValidationItem activities.

Forms Builder Version 3.6.1 514 Help Guide

A local variable of typeValidationMessageCollection is created and supplied to the GetAttachments activity.

If the activity returns errors, the InvokeMethod activity adds the validation message to formIn-
stance.ValidationMessages so it can be displayed in Renderer.

Supply a parameter for the Add method by clicking on the Parameters attribute in the Properties window. Spe-
cify validationmessage(0) in the Value field for the Parameters attribute.

Forms Builder Version 3.6.1 515 Help Guide

The following images show the workflow section that contains the validation steps. It is placed in the Next transition
after the form that contains the fields to be validated.

Forms Builder Version 3.6.1 516 Help Guide

Forms Builder Version 3.6.1 517 Help Guide

Forms Builder Version 3.6.1 518 Help Guide

Multiple Validations Items When Processing a Grid
You can use custom validations to validate multiple items when processing a grid. The custom validations can loop
through an array of items and display all validation errors when the user attempts to save the data.

This example is based on a form in which the user enters an array of reference addresses. The workflow checks for a
validation message on each item by setting the variable "singleValidation". The validation messages on the array
items are then concatenated to the main formInstanceValidationMessages using the CreateValidationItem activity.

The custom validation sequence is placed in the Trigger section of the WaitForBookmark activity (labeled "Next")
from the form on which you want to do the validation (Source: "PersonalDataSheet" in our example). The condition
in the Next transition is set to "Not formInstance.ValidationMessages.HasErrors ". The custom validation message is
displayed before the transition to the subsequent form (Destination: "Default-Frame" in our example).

The following activities are used in the custom validation sequence:

a. ForEach<>
b. SaveEntity<>

Forms Builder Version 3.6.1 519 Help Guide

c. If
d. CreateValidationItem
e. InvokeMethod

Forms Builder Version 3.6.1 520 Help Guide

Forms Builder Version 3.6.1 521 Help Guide

a. ForEach<>

The ForEach<StudentRelationshipAddressEntity> activity loops through the reference addresses obtained
through the "myAddresses" InArgument.

The "myAddresses" argument is defined in the workflow as:

The myAddresses argument is set in the Model property on Text Box controls on the PersonalDataSheet
form as:

l vm.models.myAddresses[0].FirstName
l vm.models.myAddresses[0].LastName
l vm.models.myAddresses[0].RelationToStudent
l vm.models.myAddresses[0].StreetAddress
l vm.models.myAddresses[0].City
l vm.models.myAddresses[1].FirstName, etc.

b. SaveEntity<>

The SaveEntity<StudentRelationshipAddressEntity> activity uses the "singleValidation" variable as InAr-
gument for the ValidationMessages collection.

The "singleValidation" variable is defined in the workflow as:

Forms Builder Version 3.6.1 522 Help Guide

c. If

The If activity uses the Condition "singleValidation.HasErrors". If errors are found, the sequence containing
the CreateValidationItem activity is executed.

d. CreateValidationItem

The CreateValidationItem activity is set to a Message Type of "Error" for the InArgument of "formIn-
stanceValidationMessages".

The Message string displayed by the activity is defined as:

"Check address for Reference " & reference.FirstName & " " & reference.LastName & " Error: " & singleVal-
idation(0).Message

Note that the "singleValidation" variable is used to hold the validation value for each item in the array.

Forms Builder Version 3.6.1 523 Help Guide

e. InvokeMethod

The InvokeMethod activity is used to clear a singular collection for the next iteration of the loop. Otherwise
the failure of a previous item in the array would remain and trigger the next item to show a failure as well.

Forms Builder Version 3.6.1 524 Help Guide

Forms Builder Version 3.6.1 525 Help Guide

Passing Values to an End State Form
A customized end state form or confirmation form can display values that are assigned on previous forms within a
sequence; however, any values that are assigned in the final transition before the end state form are not passed to
the end state form. If you need values from the last transition to be available as part of the model and passed to the
end state form, the Entry section of the final State in the workflow must contain a WaitForFormBookmark activity.

Example
The sequence contains the following forms: Welcome, UserName, Nationality, and End. The user enters a user name
and selects a nationality value. The user name and nationality value are displayed on the End form.

An Assign activity in the final transition assigns a value to the nationality argument. This argument is bound to vm.-

models.nationality. To pass this assignment to the End form, a WaitForFormBookmark activity is inserted into
the Entry section of the End form.

Forms Builder Version 3.6.1 526 Help Guide

The customized End State form contains an HTML component with the following HTML code:

<div>You submitted the following information:</div>

<div>User name: {{vm.models.userName}}</div>

<div>Nationality: {{vm.models.nationality}}</div>

Without the WaitForFormBookmark activity in the Entry section of the End form, the value of the nationality argu-
ment would not be available for display in the End form.

Forms Builder Version 3.6.1 527 Help Guide

Workflows for CampusNexus CRM
Forms Builder can be set up to use the CampusNexus Student database, the CampusNexus CRM database, or both.
When both databases are used, Form Designer displays the Service Provider option to enable you to select a data-
base and the associated entities. When only one of the two databases is used, the entities available for the selection
of form fields will correspond to the database, and the Service Provider option is not displayed.

When CampusNexus CRM is the Service Provider, you can build forms that use CampusNexus CRM entities and
design workflows for the associated form sequences. These workflows rely on specific events and objects that are
generated in CampusNexus CRM.

CampusNexus CRM Events and Objects
All operational and reference objects in CampusNexus CRM are wrapped in the assembly file Cmc.Nex-
usCrm.Contracts.dll. Whenever new properties are created in CampusNexus CRM or an existing property definition
(metadata) is changed, this assembly is regenerated. Workflows for CampusNexus CRM require the events and
objects contained in the Cmc.NexusCrm.Contracts.dll to be available in Workflow Composer and Forms Renderer.

To regenerate the assembly after any metadata changes, perform the following steps:

1. On the IIS Server of the Web Client for CampusNexus CRM, restart theCmc.Crm.Workspaces application.

2. Navigate to the URL of the Web Client for CampusNexus CRM.

3. Copy the regenerated Cmc.NexusCrm.Contracts.dll from the \bin folder of the Web Client to the install-
ation path of Workflow Composer and to the \bin folder of Forms Renderer.

As a best practice, when CampusNexus CRM metadata is changed, the generated contracts assembly file (Cmc.Nex-
usCrm.Contracts.dll) must be copied from the bin folder of Web Client to the installation path of Workflow Com-
poser and to the \bin folder of Forms Renderer.

Do not copy the Cmc.NexusCrm.Contracts.dll to the \bin folder of Forms Builder

Designer.

If an existing workflow includes a property that is not available in the current generated contracts, the administrator
needs to manually edit the workflow and remove the property.

Note: With Workflow Composer 2.8 and later, the .dll file can be copied while you remain logged on to Workflow
Composer. Any updates will be reflected in Workflow Composer after you log off and on again.

Workflow Activities for CampusNexus CRM
TheCmc.NexusCrm.Common.Workflow namespace provides activities designed specifically for CampusNexus
CRM, e.g., GetAttachment, GetRelatedEntity, and LookupContact. These activities become available when theActiv-
ities and Contracts (CRM) package is installed using the Package Manager within Workflow Composer.

Forms Builder Version 3.6.1 528 Help Guide

In addition to the workflow activities from the Cmc.NexusCrm.Common.Workflow namespace, workflows for form
sequences can use other activities, such as generic activities (Assign, If, StateMachine, etc.) and workflow activities
designed for CampusNexus packages.

For detailed information about these activities, please refer to Workflow Help.

https://help.campusmanagement.com/WF/Content/Workflow/welcome.htm

Forms Builder Version 3.6.1 529 Help Guide

Grid Using Entity Collection Activities
When you create forms sequences that allow users to add or edit items in a grid (e.g., array of documents or
addresses), you can use the GetEntityCollection<> and SaveEntityCollection<> workflow activities to retrieve an
existing array from the database and save any new or modified items.

The GetEntityCollection<> and SaveEntityCollection<> activities are available in Workflow Composer version 2.7 and
later and require the followingminimum versions of activities and contracts:

l CampusNexus Student version 20.0.x

— OR —

l CampusNexus CRM version 12.2.x

The minimum Cmc.Core.dll version installed in Program Files (x86)\CMC\Workflow must be 5.1.167 or greater.

Note: If you use these activities with Student 19.0 and Workflow Composer 2.7, you won’t see any errors in Work-
flow Composer (because it has minimum Cmc.Core.dll version), but you’ll see a server error at runtime.

The following section provides a detailed example of the workflow activities required to add/edit and save records in
an entity collection.

Add, Edit, and Save Records in a Collection
This workflow example is associated with a Forms Builder sequence that retrieves a collection of records for the Stu-
dentRelationshipAddressEntity and exposes the records in a grid control. The user of the form sequence is allowed
to add and edit data in the grid. The new and modified records are saved to the database.

1. In Form Designer, create a form using theGrid component.

2. Bind the Grid component to the workflow using theModel property value vm.models.myAddresses.

Forms Builder Version 3.6.1 530 Help Guide

3. Configure theColumns property to allow the user to add, edit, and delete data.

4. In Sequence Designer, add the form to a sequence.

5. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

6. In Workflow Composer, create the variables shown below.

Forms Builder Version 3.6.1 531 Help Guide

7. Create an argument of type ICollection<StudentRelationshipAddressEntity> for themyAddresses
model value that binds the grid to the workflow. The path to browse to the argument type
is: System.Collections.Generic.ICollection<Cmc.Nexus.Common.Entities.StudentRelationshipAddressEntity>.

8. The GetEntityCollection<> activity needs a list of ids for the collection of the same entity type to retrieve. To
achieve this, drag an ExecuteQuery activity into the Entry section of the Welcome form. This activity
retrieves a set of document ids for a student from the database and returns the data in a variable named
addrSet (see variables created above).

The Command property is defined as "select syaddressid from syaddress where systudentid = 51850"
where the systudentid value is hard-coded. Use a variable for the systudentid as appropriate in your envir-
onment.

Forms Builder Version 3.6.1 532 Help Guide

9. Drag a ForEach<> activity below the ExecuteQuery activity. The ForEach<> is activity converts the dataset
type argument returned by ExecuteQuery to a collection of Int32 ids to pass to GetEntityCollection<> activity
using the Values property addrSet.Tables(0).AsEnumerable.

Forms Builder Version 3.6.1 533 Help Guide

10. Drag an AddToCollection<> activity into the Body section of the ForEach<> activity. The AddToCollection
activity adds items to the collection when users enter new data on the form.

The collection is defined by the variable addrs of type List<Int32> with a default value of new List(Of
Int32).

The Item property valueCINT(item("SyAddressId")) converts the data to integers.

11. Drag aGetEntityCollection<> activity below the ForEach<> activity. The GetEntityCollection<> activity uses
the StudentRelationshipAddressEntity.

The input argument is the addrs variable.

The output argument is themyAddresses argument that binds the grid to the workflow.

Forms Builder Version 3.6.1 534 Help Guide

12. Drag a ForEach<> activity into the Next transition following the form the contains the Grid component.

The Values property holds themyAddresses argument that binds the grid to the workflow.

This instance of the ForEach activity gathers all rows in the grid including rows that were added by the form
user.

Forms Builder Version 3.6.1 535 Help Guide

13. Drag an If activity into the Body section of the ForEach<> activity. Specify the following condition to detect if
an item was added to the StudentRelationshipAddressEntity:
item.EntityState = Cmc.Core.EntityModel.EntityState.Added

Drag an Assign activity into the Then branch to the associate the hard-coded studentid with the
itemEntityState array.

Add another Assign activity to set the item.Id to -1. This assign statement ensures that a new item is appen-
ded to the array. The last element of an array is the length of the array - 1.

Forms Builder Version 3.6.1 536 Help Guide

14. Drag a SaveEntityCollection<> activity into last Next transition of the sequence. The activity will handle
add, edit and delete of any entity in the. In our example, the activity saves the changes passed in through
myAddresses to the ICollection<StudentRelationshipAddressEntity>.

Forms Builder Version 3.6.1 537 Help Guide

15. Finally, in the Condition field of the last Next transition, specify not formIn-
stance.ValidationMessages.HasErrors to catch any validation errors.

Forms Builder Version 3.6.1 538 Help Guide

Forms Builder Version 3.6.1 539 Help Guide

Renderer
Forms Builder Renderer constructs the web pages for the sequences that were designed using Designer.

Renderer is installed on your web server under wwwroot\CMCFormsRenderer_V3.

http://<server>.<domain>:<port>/#/Sequencelist

Renderer is installed on port 9003 by default. The port number can be customized during installation. It can be
installed on port 443 with HTTPS.

https://<server>.<domain>:443/#/Sequencelist

Access your Forms Builder URL and append /#/Sequencelist to view the Sequence List.

Note: The Enable Sequence List option in Settings tile determines if the Sequence List is displayed or not. Change
this setting to "false" if you do not want your users to view the Sequence List at this URL.

Forms Builder Version 3.6.1 540 Help Guide

Sequence List
The Sequence List displays a grid listing the sequences by name, title, description, version, and forms contained in
each sequence. The items in the Sequence List are generated by the Form Designer.

Note: A server error occurs when the Sequence List is opened in the same browser as Form Designer or Sequence
Designer. To avoid this error, use different browsers, e.g., open the Sequence List in Chrome while Form Designer is
open in IE.

You can perform the following actions in the Sequence List:

l Click a column header to sort a column in ascending or descending order.

l Adjust the column widths by dragging the column separators.

l Use the search and filter controls to find items within a column.

l Use the page navigation controls to view different pages of the grid.

l Use the drop-down list to select the number of sequences displayed per page.

l Click to copy the URL of the sequence to clipboard or click to view a sequence in the current browser.

Column Description

Sequence
Name

Name of the sequence assigned in Sequence Designer.

Sequence List Grid

Forms Builder Version 3.6.1 541 Help Guide

Column Description

Title Title of the sequence assigned in Sequence Designer.

Description Description of the sequence assigned in Sequence Designer.

Anon Anonymous property setting for the sequence.

The Anonymous property setting determines if a user will be authenticated before accessing the
sequence in Renderer (see Renderer Authentication).

l If Anonymous is 'true', the user will not be authenticated.
l If Anonymous is 'false' (default), the user will be authenticated.

Auth Indicates whether a sequence uses CampusNexus CRM or CampusNexus Student authentication.

Role Indicates whether a sequence is designed for a Staff or Student role. The Student role is also used for
CampusNexus CRMContacts. For more information, see Role property in Sequence Designer.

Vers Version of the sequence.

For the initial version of a sequence, the version is set to 1.0.0.1. For any subsequent updates of the
sequence, the version is incremented, for example from 1.0.0.1 to 1.0.0.2, and so on. The version is
updated each time the associated workflow is published.

Note: The Version columnwill show "?.?.?.?" if an invalid workflow version with NULL values for the
Major, Minor, Build, and Revision fields is found in theWorkflowDefinitionversion table.

Form
Names

Names of all forms in a sequence. The form names are separated by commas.

Forms Builder Version 3.6.1 542 Help Guide

Redirects for Rendered Sequences
All Forms Builder sequences are available in the Sequence List at the Renderer URL: http or https://<server-
>.<domain>:<port>/#/Sequencelist

Note: The default port number is 9003. The installer configures the port. Your Forms Builder installation may not
use the default port.

You can launch all sequences from the Sequence List. A redirect occurs depending on whether the sequence is
anonymous or authenticated.

Anonymous Sequences
Anonymous sequences do not have a redirect. These sequences can be accessed by appending the sequence ID to
the Renderer URL, for example:

https://<server>.<domain>:<port>/#/renderer/468

The first form of the sequence is displayed when you:

l Navigate to the sequence directly from the Sequence List.

l Copy/paste the URL+ID of the sequence directly into the browser's address bar.

l Point to the URL+ID from another webpage (see Embed a Form on a Website).

When navigating to an anonymous sequence from the Sequence List, you can navigate back to the Sequence List
using the browser's back button.

Authenticated Sequences
Authenticated sequences are redirected to the Portal login page, for example:

http or https://<server>.<domain>:81/Login.aspx

The redirect code for the sequence is appended to the URL of the Portal login page, for example:

https://<server-
>.<-
domain>:81/Lo-
gin.as-
px?ReturnUrl-
=%2f%3fwa%3-
3dwsignin1.0%26wtrealm%3dhttps%253a%252f%252f<server>.<domain>%253a9003%252f%26wct%3d2017-04-
27T17%253a16%253a59Z%26wreply%3d-
https%253a%252f%252f<server-
>.<-
domain>%253a9003%252f%26w-
ctx%3drm%253d0%2526id%253d-
pass-
ive%2526ru%253d%2523%252-

Forms Builder Version 3.6.1 543 Help Guide

fren-
der-
er%252f502%26whr%3d-
https%253a%252f%252f<server-
>.<-
domain>%253a9003%252f%26Ap-
pType%3dRenderer&wa=wsignin1.0&wtrealm=https%3a%2f%2f<server>.<domain>%3a9003%2f&wct=2017-04-
27T17%3a16%3a59Z&wreply-
=https%3a%2f%2f<serve-
r>.<-
domain>%3a9003%2f&w-
ctx-
=rm%3d0%26id%3-
dpass-
ive%26ru%3d%23%2frenderer%2f502&whr=https%3a%2f%2f<server>.<domain>%3a9003%2f&AppType=Renderer

The Portal login page is displayed when you:

l Navigate to the sequence directly from the Sequence List

l Ccopy/paste the redirect code directly into the browser's address bar

l Point to the redirect from another webpage (see Embed a Form on a Website).

The first form of the sequence is displayed after logging in to Portal.

When navigating to an authenticated sequence from the Sequence List, you cannot navigate back to the Sequence
List using the browser's back button.

Default Navigation Paths within Sequences

Scenario Anonymous Sequence
Authenticated
Sequence

The user
completes a
sequence.

The sequence ends on the confirmation page. The submitted data is saved if the workflow contains
appropriate activities.

The user
launches a
previously
completed
sequence.

The first form of the sequence is displayed. This is a clean sequence, i.e., the previously entered data
is not displayed.

Forms Builder Version 3.6.1 544 Help Guide

Scenario Anonymous Sequence
Authenticated
Sequence

The user
exits a
sequence
before com-
pleting it and
returns to the
sequence.

If a user has closed the browser, the first form of the sequence is displayed.
This is a clean sequence, i.e., the previously entered data is not displayed. The
durable instance becomes an orphan and will never be used again, because a
new one will be created.

However, in Forms Builder 3.5, if the user has never closed the browser and
just gone to another web site, user information cached in the browser may still
be available to look up a durable instance, and coming back to the sequence in
this case, the sequence will start up where it left off, up to a limit where
anonymous pseudo-authentication expires or is replaced by other authen-
tication information.

If the user stays
logged in, the
sequence continues
at the form where
the user previously
left the sequence.

If the user logs out,
the Portal login page
is displayed. The
sequence starts
from the form where
user logged out.

The user
logs out
before com-
pleting the
sequence
and logs in
again.

— NA — The Portal login
page is displayed.
The sequence starts
from the form where
user logged out.

Notes:

l The default paths described above can be changed by the workflow for a sequence.

l The placement of SaveEntity<> activities in the workflow determines when data will be saved within a
sequence. Data can be saved at every Next transition or at the end of the sequence. For more information,
see Create, Get, and Save Entity Activities.

Forms Builder Version 3.6.1 545 Help Guide

Preview and Update a Form/Sequence
When you design or modify a form or sequence you may want to preview the rendered output before making it
available to end-users. To do so:

1. In Form Designer, create a form with the required fields/components and properties. Save the form.

2. In Sequence Designer, add the form to a sequence and save the sequence.

3. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

4. In Workflow Composer, save, publish, and enable the workflow for the sequence.

5. In Forms Renderer, select and review the rendered sequence. Keep the browser open.

Note:

l Use different browsers for Form Designer and Forms Renderer. For example, open the Sequence List
(i.e., Renderer) in Google Chrome while Form Designer/Sequence Designer is open in Internet Explorer.

l You can also use the incognito (or private browsing) mode in any browser. For example, open Form
Designer in Chrome and then open the Sequence List in another instance of Chrome in incognito
mode. You must open another instance of the browser (not just another tab) in incognito mode.

6. To revise the sequence:

l In Form Designer, edit the layout of fields/components, change property values as needed, and save
the form.

l In Workflow Composer, edit the workflow for the sequence, save, publish, and enable the new version
of the workflow.

7. Return to the browser with the rendered sequence, press F5 or Ctrl+F5, and check if the revisions produced
the desired results.

Repeat the last two steps until you are satisfied with the rendered sequence.

When the results are approved, publish the URL for the rendered sequence and ensure that the correct workflow
version is enabled.

If you decide not to use a sequence, do not publish the URL and disable the workflow. When a workflow is disabled
or deleted, end users accessing the associated sequence will receive an error message.

If you modify a published workflow and then publish the updated workflow version, end users can complete any act-
ive instances of the previous workflow version without receiving an error message.

Forms Builder Version 3.6.1 546 Help Guide

Renderer Authentication
When Forms Builder is integrated with CampusNexus Student, an end user logging in to an institution's Portal is
authenticated through the Portal Security Token Service (STS). Accounts are created via the STS and can be cus-
tomized using the Portal Configuration Tool.

The Portal security service also authenticates users accessing a form sequence when the sequence is non-anonym-
ous (see Sequence List). End users do not need to log in to a form; however, if they are logged in via another
sequence or via Portal, they will see an option to log out.

To create a Portal user account:

1. Type the Portal URL in the address bar of your browser. The login page is displayed.

2. Click the Student Portal link. The My Campus Login page is displayed.

3. Click Create Account.

4. Enter the Student Identification (if known) and click Submit.

5. Enter your details in the displayed page to create a new account. All fields marked with an asterisk are
required.

When applicants or students create new accounts via the CMCPortalSTS, a wpUserId (web portal user Id) is gen-
erated for them alongside the User Name they choose. The wpUserId is linked to the SyStudent record in the
CampusNexus Student database. The wpUserRelation needs to be created through a workflow. For more inform-
ation, see Link a Portal Account to a Student Record.

Note: If a staff sequence is accessed via cloud services (Azure), you must include a LookupUser activity with User-
Type=Staff in the workflow to ensure proper authentication and authorization for the staff role.

Forms Builder Version 3.6.1 547 Help Guide

Azure AD Authentication
When Forms Builder is installed on premises, authentication of users is handled by the Security Token Service (STS)
component.

l Users of sequences associated with the Student/Contact role are authenticated by the Student STS for Cam-
pusNexus Student or by the Contact STS for CampusNexus CRM.

l Users of sequences associated with the Staff role are authenticated by the Staff STS.

The authentication token returned by the STS identifies the user's role. The token enables the user to log in to Portal
and access authenticated sequences as Student/Contact or Staff.

Forms Builder 3.4 and later can also be deployed in a cloud (Azure) environment with Active Directory (AD) authen-
tication. In this environment, the STS component is not used. In an Azure AD environment, the authentication pro-
cess does not allow for role verification.

The logic to verify the user's role must be embedded in all form sequences that are deployed in an Azure AD envir-
onment. Each workflowmust include a LookupUser activity with UserType=Student or UserType=Staff as appro-
priate. The LookupUser activity with a proper UserType value ensures that student users cannot access staff
sequences and vice versa. See Workflow Examples below.

Note: When student and staff users share the same Azure AD instance, some users need to be granted access to
specific applications in Azure while other users need to be denied access. For more details about these con-
figurations, see the following links:

l Assign a user or group to an enterprise application:
https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/assign-user-or-group-access-portal

l Remove a user's access from an enterprise application:
https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/methods-for-removing-user-access

Workflow Examples

When sequences for Staff and Student roles are deployed in an Azure AD environment, the workflows need to
include logic as detailed below. These workflow segments need to be placed in the first form of a sequence.

Verification of Staff Role in Azure AD

For staff sequences we recommend creating a landing page that does not display any information intended for staff
users only. The landing page should display a validation error if an unauthorized user (i.e., student) tries to access
the staff sequence.

The following workflow segment checks if a user is permitted to access a staff sequence. It checks for a valid staffid.

https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/assign-user-or-group-access-portal
https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/methods-for-removing-user-acces

Forms Builder Version 3.6.1 548 Help Guide

1. The Entry section of the first form contains a LookupUser activity with the following properties:

UserId staffid

UserName formInstance.UserName

UserType Cmc.Nexus.FormsBuilder.Entities.UserType.Staff

ValidationMessages formInstance.ValidationMessages

2. An If condition checks if staffid = 0.

Forms Builder Version 3.6.1 549 Help Guide

a. The Then branch contains a CreateValidationItem activity with the following properties:

Message "This staff user was not found"

Messages formInstance.ValidationMessages

MessageType Error

Result <blank>

b. The Else branch contains aGetEntity<StaffEntity> activity with the following properties:

EntityId staffid

Result staffEntity

3. In theNext transition, check for a validation error to prevent the user from proceeding if the user's role does
not match the role associated with the sequence. In the Condition field, specify not formIn-
stance.ValidationMessages.HasErrors.

Verification of Student Role in Azure AD

The following workflow segment checks if a user is permitted to access a student sequence. It creates a new student
record if needed. The workflow denies access for staff users and prevents creating student records for users who
logged in as staff.

Forms Builder Version 3.6.1 550 Help Guide

1. The Entry section of the first form contains a LookupUser activity with the following properties:

UserId staffId

UserName formInstance.UserName

UserType Cmc.Nexus.FormsBuilder.Entities.UserType.Staff

ValidationMessages formInstance.ValidationMessages

2. An If condition checks if staffid > 0.

This condition checks if a staff user is accessing a student sequence. The workflow prevents the staff user
from running student sequence and ensures that if a new student attempts to create an account, a student
record would not be created for a staff user.

Forms Builder Version 3.6.1 551 Help Guide

a. The Then branch contains a CreateValidationItem activity with the following properties:

Message "Staff User Does Not Have Access to Run Student Sequence"

Messages formInstance.ValidationMessages

MessageType Error

Result <blank>

b. The Else branch contains a sequence with LookupUser activity for UserType=Student, followed by a
condition that checks for a studentId, retrieves an existing StudentEntity or creates a Student Entity,
and assigns required properties to the StudentEntity.

Forms Builder Version 3.6.1 552 Help Guide

The Else branch contains a LookupUser activity with the following properties:

UserId studentId

UserName formInstance.UserName

Forms Builder Version 3.6.1 553 Help Guide

UserType Cmc.Nexus.FormsBuilder.Entities.UserType.Student

ValidationMessages formInstance.ValidationMessages

An If condition checks if studentId<=0.

i. The Then branch contains a CreateEntity<StudentEntity> activity with the following prop-
erty:

Result studentEntity

The followingAssign activities are placed below the CreateEntity activity:

To Value

studentEntity.FirstName formInstance.UserInfo.FirstName

studentEntity.LastName formInstance.UserInfo.LastName

studentEntity.EmailAddress formInstance.UserInfo.EmailAddress

studentEntity.CampusId formInstance.UserInfo.CampusId

ii. The Else branch contains aGet<StudentEntity> activity with the following properties:

EntityId studentId

Result studentEntity

The following additional properties may need to be assigned to the StudentEntity below the Then and
Else branches with the CreateEntity<StudentEntity> and GetEntity<StudentEntity>.activities.

Forms Builder Version 3.6.1 554 Help Guide

*Assign values as appropriate for your environment.

To Value*

studentEntity.SchoolStatusId 1

Forms Builder Version 3.6.1 555 Help Guide

To Value*

studentEntity.LeadDate datetime.Now

studentEntity.IsActive true

studentEntity.LeadSourceId 680

studentEntity.AssignedAdmissionsRepId 2

3. In theNext transition, check for a validation error to prevent the user from proceeding if the user's role does
not match the role associated with the sequence. In the Condition field, specify Not formIn-
stance.ValidationMessages.HasErrors.

For details about pre-populating formInstance.UserInfo variables when sequences are deployed in a cloud envir-
onment with Azure AD, see Azure AD Claims.

Login and Account Creation via Portal

For authenticated form sequences, Portal is used for both login and account creation and then control returns to
Renderer. A page is displayed providing the option to log in using an existing Azure AD account or, if the user does
not yet have an account, to create a new account. If "Create Account" is selected, the user will be redirected to the
Portal.

Forms Builder Version 3.6.1 556 Help Guide

In Portal, the user will follow the steps to create an Azure AD account. The following fields are displayed when cre-
ating a new account:

l Campus
l First Name
l Last Name
l Email address
l Username
l Password
l Security questions - if configured (e.g., Place of Birth, etc.)

Upon completion of the "Create new account" page, a new Azure AD account and Portal account (WpUser) will be cre-
ated, and the user will be redirected back to the Portal login page.

The Login Locale setting can be used to add a drop-down list for locales on the Azure AD login page. For more inform-
ation, see Login Locales.

If the "Create Account" option is selected on the Azure AD login page, the user is directed to the "New Account
Creation" page in Portal. The header bar in Portal has a "Choose language" drop-down that is not linked to the Login
Locales setting.

Renderer Web.Config Changes

When Forms Builder is installed in an Azure AD environment, the <issuers> section in the Forms Renderer web.-
config file will contain an "accountCreation" attribute that holds the Portal account creation URL.

<!-- STS or Azure AD redirect URLs -->
<issuers>
<!-- <url key="A mapping issuerKey"

value="An STS or Azure AD Login URL"
accountCreation="If Azure AD, the portal account creation URL, otherwise empty" /> -->

<url key="Student STS" accountCreation="<Portal account creation URL>" value-
e="https://<server>.<domain>:<port>" />

<url key="CRM STS" accountCreation="" value="https://<server>.<domain>:<port>" />
</issuers>

Additional Renderer web.config changes may be necessary if the workflows for your authenticated forms (e.g., RFIs)
use formInstance.UserInfo variables. For more information, see Azure AD Claims.

Forms Builder Version 3.6.1 557 Help Guide

Azure AD Claims
For authenticated forms, user information is captured in claims that are passed from the authentication service to
Forms Renderer. You can extract user information from the claims and pass it to workflows using the formIn-
stance.UserInfo variable. You can then use the values contained in the variable to pre-populate form fields such as
first name, email, and user name.

The claims that are passed to Renderer are different depending on whether authentication is performed by Stu-
dent/Contact STS or by Azure Active Directory (AD). Prior to the release of Forms Builder 3.4, the STS was the only
authentication service available. The code for the formInstance.UserInfo variable was designed to work with the STS
claims. The code does not automatically extract user information from claims passed by Azure AD. This means that
any previously created authenticated forms with workflows that use formInstance.UserInfo variables will not
provide the capability to pre-populate form fields with user information when deployed in a cloud environment with
Azure AD.

However, the code for Forms Builder 3.4 allows overriding the claims in the web.config file of Renderer. These over-
rides map STS claims to Azure AD claims. The overrides prevent any existing workflows that rely on the formIn-
stance.UserInfo variables from failing with null pointer reference errors in AzureAD environments.

The following default claim types from the Student STS are available:

CampusIdClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/campusid"
EmailAddressClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/email"
FirstNameClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/fname"
FullNameClaimType: "http://schemas.microsoft.com/identity/claims/displayname"
LastNameClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/lname"
MiddleNameClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/mname"
RoleClaimType: "http://schemas.microsoft.com/ws/2008/06/identity/claims/role"
UserIdClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/userid"
UserNameClaimType: "http://schemas.xmlsoap.org/ws/2010/08/identity/claims/uname"

To override claims, you can add keys to <appSettings> section of Renderer web.config file. Use the claim type as
the key and add your value. For Azure, the values are fixed, i.e., you must use the values as they are. For other
environments, you can specify your own values to override any claim with anything you desire.

<add key="FirstNameClaimType" value-
e="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname" />
<add key="EmailAddressClaimType" value="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name"
/>
<add key="UserNameClaimType" value="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name" />

With the overrides above added to the web.config of the Renderer in the Azure AD environments, the FirstName,
UserName, and EmailAddress fields will be populated and accessible within the workflow using the formIn-
stance.UserInfo variable.

Note: The following claims are currently not available in Azure AD. If any existing workflows contain formIn-
stance.UserInfo variables with these properties, the properties will be blank (i.e., empty) when the forms are
deployed in an Azure AD environment:

l CampusId
l LastName

Forms Builder Version 3.6.1 558 Help Guide

l FullName (Technically, the Full Name claim is available in Azure AD, however, the Forms Builder code ignores it
even the override is there.)

For details about designing sequences for authentication with Azure AD, see Azure AD Authentication.

Forms Builder Version 3.6.1 559 Help Guide

Link Sequences to Portal Document Center
When form sequences are linked to the Document Center in the Student Portal, users can launch the sequences dir-
ectly from the Document Center without having to access the Sequence List.

The URLs for sequences have different formats depending on whether Azure AD authentication is used.

Sequence URL without Azure AD:

https://<server:port>/#/renderer/<sequence number>

Sequence URL with Azure AD:

https://<server>.campusnexus.cloud/account/InterceptedLogin?returnUrl=%2Frenderer%2F<sequence num-
ber>

When the sequence URL with the "intercepted login" part is made available in the Student Portal, logged in users can
access the sequence without having to log in again.

Update Documentation Links in Portal
1. Access the Portal Admin Console.

2. Under Settings and Environment, click Portal Documents.

3. Select theCampus.

4. Update the URLs in the Location fields.

5. Click Save.

6. Click theOpen button to verify the updated link.

Forms Builder Version 3.6.1 560 Help Guide

Associate Document Statuses with Documents
Optionally, you can associate document statuses with the documents listed in the Documentation Center of Stu-
dent Portal.

1. Access the Portal Configuration tool.

2. Select theCampus.

3. Expand Page Transactions and navigate to Student My Documents.

4. In theDocuments Status List, select the applicable document statuses.

5. Click theUpdate button at the bottom of the page.

6. Access the Student Portal, navigate to Documentation Center, and test the updated links.

Forms Builder Version 3.6.1 561 Help Guide

Embed a Form on a Website
You can easily integrate a form sequence into a website using the HTML <iframe> tag. This will display the form
within a frame on a webpage. Any redirects and submit functions on the form will be displayed within the frame.
The user does not need to navigate away from the webpage to complete the form.

Embedding a form using the <iframe> tag allows you to maintain the form separately from the website. You can
update the form in Forms Builder and the updates will appear on the website as long as the URL of the sequence
remains the same.

You can use CSS to style the <iframe>. You can apply borders, scroll bars, set up responsive behavior, and so on. The
default CSS settings for the <iframe> element in most browsers are:

iframe:focus {
outline: none;
}
iframe[seamless] {
display: block;
}

Procedure
1. Build your form sequence and access it from the Sequence List.

2. Create or edit a page on your website. Add an <iframe> tag in the body of the webpage.

3. In the <iframe> tag, specify thewidth and height of the frame and theURL of the form in the Sequence
List.

Example

<iframe width="80%" height="700px" style="border: 1px solid green" src-
c="https://<server>:<port>/#/renderer/511">

4. Save the webpage and publish it to your website.

5. When users access the webpage, they’ll see the form referenced from the Sequence List in a frame on the

Forms Builder Version 3.6.1 562 Help Guide

webpage.

Forms Builder Version 3.6.1 563 Help Guide

Renderer URL Query Parameter
You can pass a query parameter when the Renderer URL is invoked. You can pass the query parameter into the work-
flow for a sequence and use the query parameter in various workflow activities. For example, the query parameter
can be:

l Written to a log
l Assigned to a query
l Assigned to an entity

Syntax
The syntax for the Renderer URL query parameter is as follows:

https://<server>.<domain>:<port>/#/renderer/<sequencenumber>?<para-
meter1>=<value1>&<parameter2>=<value2>

Notes:

l A query parameter is a name-value pair.

l A question mark (?) precedes the first query parameter.

l Multiple query parameters are separated by the ampersand (&).

l URL encoding applies to the query parameter string:

o URL encoding is required for any characters outside of the ASCII character set.

o URL encoding replaces unsafe ASCII characters with a "%" followed by two hexadecimal digits.

o URLs cannot contain spaces. URL encoding normally replaces a space with a plus (+) sign or with %20.

For more information, see HTML URL Encoding Reference and URL Decode and Encode tool.

Pass a URL Query Parameter to a Workflow
You can pass a Renderer URL query parameter to the workflow of any form sequence.

Youmust capture the Renderer URL query parameter in the Entry state of the first form in a sequence.

Example

The Renderer URL with query parameters is as follows:

https://<server>.<domain name>:<port>/#/Renderer/<workflow definition Id or sequence Id>/?query parameters

Our example:

https://www.w3schools.com/tags/ref_urlencode.asp
https://www.urlencoder.org/

Forms Builder Version 3.6.1 564 Help Guide

https://<server>.<domain>:<port>/#/Renderer/540?Firstname=John&Lastname=Doe

The Welcome form in the workflow for sequence 540 contains LogLine activities that write the Firstname and Last-
name values to a log.

Environment.NewLine & "Firstname=" & formInstance.QueryParams.DataDictionary("First-
name").ToString

Environment.NewLine & "Lastname=" & formInstance.QueryParams.DataDictionary("Last-
name").ToString

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

Note that "ToString" is required convert the parameter value to its string representation so that it is suitable for dis-
play.

These values are also available client-side.

vm.queryParams.Firstname

vm.queryParams.Lastname

They are also available in external JavaScript in an HTML component:

vmQueryParamsRef.Firstname

Forms Builder Version 3.6.1 565 Help Guide

vmQueryParamsRef.Lastname

Note: If you changed the NLog configuration as recommended in Log Files, the Level will be "Information" ("Info" in
NLog).

Pass "addonQueryParams" via the URL
Another option to pass values from the URL is through the "addonQueryParams" key which is a built-in key name
(unlike the previous key value pairs which define both the key and the value). You can use this method client-side for
operations such as:

l Setting a title or image in HTML
l Providing a value for JavaScript to use
l Providing a value for a style sheet

Example

https://<server>.<domain name>:<port number>/#/Renderer/<workflowdefinitionId or sequence identifier goes
here>/This+is+arbitrary+information?firstname=john

You can access the text between the slash (/) and the question mark (?) in the workflow with the following argument:

formInstance.QueryParams.DataDictionary("addonQueryParams").ToString()

Forms Builder 3.3 and later adds client-side access for both the URL Query Parameter key value pairs and the built-
in addonQueryParams key.

Query parameters could be used as a binding value with the following:

vm.queryParams.addonQueryParams

vm.queryParams.firstName

Both are also available with the vmQueryParamsRef JavaScript global variable. So, the following would be a client-
side way to access the examples above:

vmQueryParamsRef.firstName (or vmQueryParamsRef[“firstName”])

vmQueryParamsRef.addonQueryParams (or vmQueryParmsRef[“addonQueryParams”])

In other words, using the key as a dot suffix gives access to the value.

This could be useful for client-side JavaScript in an HTML component (see HTML component).

It also could be used to decode a value before the workflow receives it. If the value of a key, myEncodedValue (or
the built-in addonQueryParams key) happened to be the following URL encoded text:

“This+is+>&2044”

Then you could decode this with some JavaScript so that the workflow would receive this decoded value:

“This is > 44”

Forms Builder Version 3.6.1 566 Help Guide

The following JavaScript in an HTML component would decode and assign this to a new argument, vm.-
models.myDecodedValue:

<script type="text/javascript">

vmModelsRef.myDecodedValue = decodeURI(vmQueryParamsRef.myEncodedValue);

</script>

Forms Builder Version 3.6.1 567 Help Guide

Renderer Media Variables
The following variables are available to a workflow (as arguments) or to external JavaScript by vmModelsRef. These
variables may be useful to JavaScript or workflows that have to make decisions about the HTML to render for dif-
ferent size screens.

All the following media variables are true when the condition is satisfied on the current device's screen.

Variable Description

xsMedia Maximum width is 599px

gtxsMedia Minimum width is 600px

smMedia Minimum width is 600px andmaximum width is 959px

gtsmMedia Minimum width is 960px

mdMedia Minimum width is 960px andmaximum width is 1279px

gtmdMedia Minimum width is 1280px

lgMedia Minimum width is 1280px andmaximum width is 1919px

gtlgMedia Minimum width is 1920px

xlMedia Minimum width is 1920px

landscapeMedia Media is in landscapemode

portraitMedia Media is in portrait mode

printMedia Media is print media

isMobile Media display is amobile device

Example: If a condition in JavaScript sets different classes or different HTML, the attribute
vmModelsRef.isMobile would be true on a phone.

Renderer Media Variables

When these variables have a suffix of Neg, they are the opposite, that is to say, xsMedia is true, means xsMe-
diaNeg is false.

Forms Builder Version 3.6.1 568 Help Guide

Multiple Renderer URLs
Using a single instance of Forms Builder (Designer and Renderer), you can design form sequences to be displayed at
different URLs with different branding.

Example

An institution with multiple campuses (Campus A, B, and C) has a Portal website with a unique URLs and distinct
branding for each campus. The campuses share a CampusNexus Student database and/or a CampusNexus CRM
database and use the same forms for applications, requests for information, etc.

The Forms Builder Renderer website of the institution is configured with bindings for the URLs of Campus A, B, and
C as shown below in Installation Manager.

The settings specified on the Additional Urls tab are written to the <authenticationConfigSection> section in
the Renderer web.config file.

l The <realms> section contains a key and value for each additional incoming Renderer URL.

l The <issuers> section contains a key and value for the authentication services, i.e., Student STS and CRM
STS.

l The <mappings> section contains the mapping between realm keys and STS keys.

 <authenticationConfigSection>
<!-- incoming urls -->

<realms>
<!-- <url key="" value="" /> -->

Forms Builder Version 3.6.1 569 Help Guide

<url key="CampusA" value="http://apply.CampusA.edu/" />
<url key="CampusB" value="http://apply.CampusB.edu/" />
<url key="CampusC" value="http://apply.CampusC.edu/" />

</realms>

<!-- STS redirect urls -->

<issuers>
<!-- <url key="" value="" /> -->
<url key="CampusASTS" value="https://studentsts.CampusA.edu:81"/>
<url key="CampusBSTS" value="https://crmsts.CampusB.edu:81"/>
<url key="CampusCSTS" value="https://studentsts.CampusC.edu:81"/>
<url key="Student STS" value="https://<server>.campusmgmt.com:811"/>
<url key="CRM STS" value="https://<server>.campusmgmt.com/cmc.crm.sts/"/>

</issuers>

<mappings>
<!-- <mapping realmKeys=" comma separated realm keys or * for wildcard match "

product=" name of the product or * for wildcard match "
issuerKey=" url key of the issuer " /> -->

<mapping realmKeys="CampusA" product="Student" issuerKey="CampusASTS"/>
<mapping realmKeys="CampusB" product="CRM" issuerKey="CampusBSTS"/>
<mapping realmKeys="CampusC" product="Student" issuerKey="CampusCSTS"/>
<mapping realmKeys="*" product="Student" issuerKey="Student STS"/>
<mapping realmKeys="*" product="CRM" issuerKey="CRM STS"/>

</mappings>

</authenticationConfigSection>

Multiple Renderer URLs for Multiple Student STS Instances
Installation Manager currently supports a single Student STS with multiple Renderer URLs. If an institution has set
up additional binding URLs for Student STS instances (see example below), the additional STS URLs need to be manu-
ally updated in the <issuer> and <mapping> sections of the Renderer web.config file.

The additional Student STS URLs need to be added to the StudentSTSURL column of the wpURL table in the Portal
database.

Forms Builder Version 3.6.1 570 Help Guide

Add a Custom Theme to Settings
To create form sequences for multiple Renderer URLs, in the Settings workspace of Form Designer associate a cus-
tom theme with an AngularJS expression that will be used to select a style sheets in the workflows.

Forms Builder Version 3.6.1 571 Help Guide

1. In the Settings workspace of Form Designer, select Themes-Custom.

2. Click Add Theme. The Add New Theme window is displayed.

l In theName field specify a name for your theme.

l In theValue field, specify the following expression: {{vm.models.cssFileName}}

3. Click Add. The Add New Theme window is closed.

4. Click Save in the Settings workspace.

Add Custom Style Sheets to Renderer
Custom style sheets that will be applied to form sequences accessed from each campus need to be added to the
CMCFormsRenderer_V3\Content\Custom folder. In our example, the institution named "MyUniversity" has
three campuses with unique logos. So, we added custom .css files for CampusA, CampusB, and CampusC to Ren-
derer.

Forms Builder Version 3.6.1 572 Help Guide

In our example, each .css file modifies the image that is displayed in the top left corner of the form sequences. We
customized the following style definition.

.navbar-brand {
padding: 0;
background: url('images/CampusNexus-SVG.svg') center / contain no-repeat;
width: 200px;
margin-left: 5px;
}</pre>

For more information, see Custom Content and Custom Styles.

Forms Builder Version 3.6.1 573 Help Guide

The images referenced in each .css file are stored in theCMCFormsRenderer_V3\Content\Custom\images
folder.

Depending on your branding needs, you can customize other style definitions. For more information, see Custom
Content and Custom Styles.

Forms Builder Version 3.6.1 574 Help Guide

Associate Sequences with a Custom Theme
The form sequences that will be accessed from the different campuses need to be associated with the custom
theme that uses the {{vm.models.cssFileName}} expression.

1. In Sequence Designer, open your sequence.

2. In the Theme-Custom value drop-down list, select the name custom theme created in the Settings above.

3. Save the sequence.

Select Style Sheets Using Workflow Activities
The first state in the form sequence workflows needs to be modified to create the association between URLs and
custom style sheets.

1. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

2. Double-click the first state in the workflow. In our example it is the Welcome form.

Forms Builder Version 3.6.1 575 Help Guide

3. Drag a Sequence activity into the Entry section of the Welcome form.

4. Create a variable of type System Uri.

5. Drag an Assign activity into the new Sequence and specify the following properties:

l To: fbbaseUri (the name of the variable created in the previous step)
l Value: new Uri(formInstance.RendererBaseUrl)

6. Drag a Switch activity below the Assign activity and specify the following properties:

l Type: System.String (Use the "Browse for Type" option to find this type.)
l Display Name: Set Style by URL
l Expression: fbBaseUri.Host.ToLower()

Forms Builder Version 3.6.1 576 Help Guide

7. Click Add new case in the Switch activity.

a. In theCase Value field, specify apply.campusA.edu (This is the URL for Campus A. It is defined in the
IIS bindings.)

b. Drag an Assign activity into the Case section and specify the following properties:

l To: cssFileName
l Value: "campusA.css" (This is a css file located in the CMCFormsRenderer_V3\Content\Custom

folder.)

Repeat this step for any other custom style sheets. In our example, we added the assign statements for the
style sheets of Campus B and Campus C.

Forms Builder Version 3.6.1 577 Help Guide

You can copy and paste the sequence with the Assign statement for the BaseUrl and the Switch activity to
other form sequences that are rendered using the custom style sheets.

If your form sequences need to retrieve student records from the database, you may want to add the Look-
upUser and GetEntity activities to the copied sequence.

8. Drag a LookupUser activity into the workflow. Specify the following properties:

l Userid: studentId (This variable of type Int32 must be defined in the workflow.)
l UserName: formInstance.UserName

9. Drag a GetEntity<> activity into the workflow. Browse for entity type <StudentEntity> and specify the fol-
lowing properties:

l EntityId: studentId
l Result: studentEntity

Forms Builder Version 3.6.1 578 Help Guide

Renderer Connection Strings
Forms Builder is installed with default connection strings for the database(s) where the Forms Builder and Workflow
tables are created. The location of the Forms Builder and Workflow tables depends on the deployment con-
figuration.

When Forms Builder is deployed with:

l CampusNexus Student and CampusNexus CRM, the Forms Builder and Workflow tables are in the Student
database.

l CampusNexus Student only, the Forms Builder and Workflow tables are in Student database.

l CampusNexus CRM only, the Forms Builder and Workflow tables are in CRM database (tlmain).

In Forms Builder deployments with CRM and Student where the default connection strings are always set to connect
to the Student database, there was a need for a CRM connection string to:

l Query the CRM database via workflows

l Perform any additional logic and duplicate check operation via SQL scripts.

To accommodate these types of CRM database queries, the "CrmConnection" string was added to the Renderer
web.config file in Forms Builder 3.6.

Excerpt of Renderer web.config in a deployment with CampusNexusStudent and CRM:

<connectionStrings>
<add name="WorkflowDurableInstancingConnection" connectionString="Data Source=<DB Server-

>;Initial Catalog=<Student DB>;Integrated Secur-
ity=True;Pooling=True;MultipleActiveResultSets=True;Application Name=FormsBuilder;" />

<add name="FormsBuilderModel" providerName="System.Data.SqlClient" connectionString="Data
Source=<DB Server>;initial catalog=<Student DB>;Integrated Security=SSPI;Persist Security Info-
o=False;MultipleActiveResultSets=True" />

<add name="dbConnection" providerName="System.Data.SqlClient" connectionString="Data Source=<DB
Server>;initial catalog=<Student DB>;Integrated Security=SSPI;Persist Security Info-
o=False;MultipleActiveResultSets=True" />

<add name="PortalConnection" providerName="System.Data.SqlClient" connectionString="Data Source-
e=<DB Server>;initial catalog=<Student Portal DB>;Integrated Security=SSPI;Persist Security Info-
o=False;MultipleActiveResultSets=True" />

<add name="CrmConnection" providerName="System.Data.SqlClient" connectionString="Data
Source=<Forms Builder Server>5\inst1;initial catalog=CRM DB;Integrated Security=SSPI;Persist Secur-
ity Info=False;MultipleActiveResultSets=True" />
</connectionStrings>

Forms Builder Version 3.6.1 579 Help Guide

Use Cases
This section provides examples of forms, workflows, and sequences built with Forms Builder.

Forms Builder Version 3.6.1 580 Help Guide

Request for Information Form
In this section, we will build a Request for Information (RFI) form and a workflow that will create a student record in
CampusNexus Student, create the student’s Portal account, and notify the student.

The screen captures in this topic show an earlier Forms Builder version. While the UI has been updated, the basic
functionality is unchanged.

Build the Form
1. Open your browser and point to the Forms Builder URL.

2. Sign in using your user name and password.

3. On the Forms Builder home page, click the Form Designer tile. Products (if applicable), Entities and Forms are
loaded into Forms Builder.

4. In the Select Provider drop-down list, select Student.

Note: This step is applicable only if your Forms Builder installation uses the databases of both CampusNexus
CRM and CampusNexus Student.

5. Click New. A 1-column panel is added to the Layout pane.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 581 Help Guide

6. Select the Prospect Inquiry entity from the drop-down list.

Note: Any time a prospective student inquires about possible enrollment, a prospect inquiry record is cre-
ated, and the information is tracked within CampusNexus Student. The Campus is a required attribute of the
prospect inquiry record.

7. Drag theCampus field into the Layout pane.

Note: The Campus field is a drop-down control that is populated with values from the CampusNexus Student
database. The binding to the database is accomplished by the Model value vm.-
models.prospectInquiryEntity.CampusId, which is automatically populated in the Property Settings. The values
for the drop-down list are obtained by the Lookup Query Campuses?$select=Code, Name, Id&$filter=IsActive
eq true&$orderby=Name, which is also populated automatically.

8. In the Property Settings panel, change the Option Label property to <Select Campus>.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 582 Help Guide

9. In the Column drop-down list, select 3 Columns and click to add a new panel to the form layout.

10. From the Prospect Inquiry entity, under Student, drag First Name,Middle Name, and Last Name into the
Layout pane.

Note: The name fields are text box controls with a default type of text. The fields are bound to the database
under the prospectInquiryEntity.Student model (vm.models.prospectInquiryEntity.Student.LastName, vm.-
models.prospectInquiryEntity.Student.MiddleName, and vm.models.prospectInquiryEntity.Student.LastName).

The Required property for these fields is set to true by default.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 583 Help Guide

11. In the Column drop-down list, select 1 Column and click to add a new panel to the form layout.

12. From the Prospect Inquiry entity, below Student, drag Street Address into the new layout panel.

Note: You can use the Tooltip property on any field to provide additional information to the user, e.g., If an
address has more than 40 characters, the additional characters in the address line will not be extracted to be
sent to COD but will be truncated.

13. Change the Required property for Street Address to true.

Required makes the control required and will raise a validation error on the form. It is set to false by default.
If input is required, set the property value to true. The rendered form will display a red asterisk () next to the
component.

o Can be bound to a workflow argument or another control's value.

o A property array string index requires single quotes, e.g., vm.models.xxx.CustomProperties['yyyyy'].

o An expression can be used that evaluates to true or false, e.g., vm.models.myvalue==7 (>,<, !=, ==, >=,
<=).

Forms Builder Version 3.6.1 584 Help Guide

o If comparing to a string, it must be in single quotes.

o (true and false must be all lowercase)

(Click the Show button to view the preceding steps in a looping animated gif.)

14. In the Column drop-down list, select 3 Columns and click to add a new panel to the form layout.

15. From the Prospect Inquiry entity, below Student, drag City, State, and Postal Code into the layout panel.

16. Change the Required property for all three fields to true.

17. Change the Option Label property for State to <Select State>.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 585 Help Guide

18. In the Column drop-down list, select 3 Columns and click to add a new panel to the form layout.

19. From the Prospect Inquiry entity, below Student, drag Email address into the layout panel. Specify the fol-
lowing properties:

a. Required: true

b. Type: email

Note: The Email address field is a text box that is bound to vm.-
models.prospectInquiryEntity.Student.EmailAddress. This text box control does not use the default text box
type of text, but instead uses the text box type of email. When the email type is selected, Forms Builder val-
idates the entry in the text box for proper format.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 586 Help Guide

20. From the Components tab, drag aMasked Text Box into the panel next to Email address. Specify the fol-
lowing properties:

a. Format: (###)###-####

b. Label: Phone Number

c. Model: vm.models.prospectInquiryEntity.Student.PhoneNumber

Note: Some of the controls listed on the Components tab provide a Model property, but unlike con-
trols that are listed on the Fields tab, the Model property value is not automatically populated for com-
ponents. If the Model value is not specified, the component will be displayed on the form, but any
values the end user enters on the form cannot be used in the workflow. If you want the component to
be bound to the workflow, specify a Model value. The Model value is always prefixed with vm.models.
The string that is appended to vm.models can be added as an In/Out argument in the associated work-
flow.

d. Required: true

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 587 Help Guide

21. From the Components tab, drag anotherMasked Text Box into the panel next to the Masked Text Box for
the Phone Number. Specify the following properties:

a. Format: (###)###-####

b. Label: Mobile Phone Number

c. Model: vm.models.prospectInquiryEntity.Student.MobilePhoneNumber

d. Required: true

Note: The Model property binds the Masked Text Boxes for Phone Number and Mobile Phone Number the cor-
responding database fields. The masking must be (###)###-#### because this is the format of phone numbers in
the CampusNexus Student database.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 588 Help Guide

22. In the Column drop-down list, select 1 Column and click to add a new panel to the form layout.

23. From the Components tab, dragMultiselect into the new panel. Specify the following properties:

a. Label: Program

b. Lookup Display Member: Name

c. Lookup Query: <see Note>

Note: Program is a multiselect field in the CampusNexus Student user interface. The Multiselect com-
ponent needs a Lookup Query to retrieve the values for the multiselect field from the database.

To create a Lookup Query, you can either:

l Copy the query from the Program ID field under ProspectInquiry > Student and paste it in the
Lookup Query property for the Multiselect component (Pro-
grams?$select=Code,Name,Id&$filter=IsActive eq true).

— OR —

l Query the data in the Web Client for CampusNexus Student as shown in the next section.

d. Lookup Sort Member: Name

Forms Builder Version 3.6.1 589 Help Guide

e. Lookup Value Member: Id

f. Model: vm.models.prospectInquiryEntity.Student.ProgramsList

Note: The Multiselect component needs to be bound to the programs list in the CampusNexus entity
model to retrieve values from the database.

g. Option Label: <Select your Program of interest>

h. Required: true

(Click the Show button to view the preceding steps in a looping animated gif.)

24. Click Save to save what you have done so far on your form. Specify the following properties:

a. Form Name: Campus University - Request for Information

b. Title: Campus University - Request for Information

Note: The title is optional. When a title is specified, it is displayed on the rendered form.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 590 Help Guide

Create a Query in the Web Client
1. Open the Web Client for CampusNexus Student in another browser.

2. Sign in with your user name and password.

3. Click theViews tile.

4. Click to create a new view.

5. In the Object drop-down list, under Academics, select Programs.

6. The Selected Properties pane lists the default query properties. For this query, we only want the Code, Id, and
Name.

a. Select CIP Code and click to delete the property.

b. Select Is Active and click to delete the property.

7. Select Id and click to move Id below Name.

8. Select Name and click

Forms Builder Version 3.6.1 591 Help Guide

to move Name to the Sort Order pane. By default, the sort order is ascending, and this is what we want.

9. Select Is Active in the Available Properties pane and click to move the property to the Conditions pane.
This will only filter active programs.

10. Click Run Query. The records returned by your query are displayed.

(Click the Show button to view the preceding steps in a looping animated gif.)

11. Click the drop-down list on the far right of the toolbar and select Query URL. The "Copy the URL to the clip-
board" popup is displayed.

12. Press Ctrl + C to copy the URL and click OK.

13. Open a new tab in your browser, press Ctrl + V to paste the URL into the address bar, and press Enter. The
browser returns the metadata of the query.

14. Select the end portion of the URL, which is the query. Select the string from "Programs..." forward and copy it
to the clipboard (Ctrl + C).

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 592 Help Guide

Add the Query to the Form
1. In Form Designer, return to the "Campus University - Request for Information" form.

2. Select theMultiselect (Program) field in the Layout pane.

3. Paste (Ctrl + V) your query into Lookup Query property. It should look exactly like this:

Programs?$select=Code,Name,Id&$filter=IsActive eq true

4. Save your form.

5. Click to return to the home page of Forms Builder.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 593 Help Guide

Create a Sequence
1. On the home page of Forms Builder, select the Sequence Designer tile.

2. Click New. A new panel is added to the Layout pane.

3. In the search bar of the Forms pane:

a. Typewelcome and drag theWelcome form into the Layout pane.

Note: The Welcome form is an out-of-the-box form that can be modified and added to each sequence
(see Welcome and Confirmation Forms). The prospective student clicks Next on this form and then pro-
ceeds through the sequence.

b. Type campus and drag theCampus University – Request for Information form below the Wel-
come form.

4. In the Properties pane:

a. In Authentication field, select the check box to set authentication to true.

b. In the Authentication Product field, select Student.

Forms Builder Version 3.6.1 594 Help Guide

Note: This step is applicable only if your Forms Builder installation uses the databases of both Cam-
pusNexus CRM and CampusNexus Student.

5. Save the sequence. Specify the following properties:

a. Sequence Name: Campus University – Request for Information

b. Title: Campus University – Request for Information

(Click the Show button to view the preceding steps in a looping animated gif.)

Edit the Workflow
1. Click the Sequence Designer tile on the Forms Builder home page.

2. Use the search box above the Sequences pane to find theCampus University – Request for Information
sequence.

3. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

4. Double-click the StateMachine label and rename it to Campus University – RFI.

Forms Builder Version 3.6.1 595 Help Guide

5. Select the icon of the second state to give it the focus and press the right arrow key a few times to move
the state to the right. This helps to organize the icons in the workflow to better navigate.

(Click the Show button to view the preceding steps in a looping animated gif.)

6. When a prospective student completes the RFI, we want to capture the data from the form and update the
CampusNexus Student database. Since our form is built with fields from the Prospect Inquiry entity, the first
step is to create a Prospect Inquiry entity record. We will create the entity when the student selects Next on
the Welcome form.

Double-click the icon on the Welcome state (first state in the workflow) and select theNext link at the bot-
tom of the transition. Specify the following properties:

a. Enter true in the Condition field of the Next transition.

Note: When the Condition evaluates to true (i.e., the student clicks Next), the Action of the transition
is executed.

b. Drag theCreateEntity activity from the Toolbox into the Action section below the Condition field. The
"Select Types" dialog for the CreateEntity activity is displayed.

c. Click thedrop-down list in the Select Type window and select Browse for Types. The "Browse and

Forms Builder Version 3.6.1 596 Help Guide

Select a .Net Type" window is displayed.

d. In the Type Name field, paste ProspectInquiryEntity (or navigate to Cmc.Nex-
us.Admissions.Contracts > Cmc.Nexus.Admissions.Entities > ProspectInquiryEntity) and click OK.

e. Click OK in the "Select Types" dialog. The CreateEntity activity is added to the Action section of the
Next transition.

f. Select theCreateEntity activity to give it the focus. Open the Properties pane and in the Result field,
specify prospectInquiryEntity.

(Click the Show button to view the preceding steps in a looping animated gif.)

7. When the prospective student selects Next on the Welcome form, the next form is the "Campus University –
Request for Information" form. When this form is completed and submitted, the workflow updates data in
CampusNexus Student and automates other tasks, such as creating a Portal account and sending emails.

a. Select the Destination link for the Campus University – Request for Information state.

b. Select theNext link at the bottom of state.

c. Change the label of the WaitForFormBookmark activity in the Trigger section of the transition to Start
your Journey! The Display Name of the WaitForFormBookmark activity will be the label of the button

Forms Builder Version 3.6.1 597 Help Guide

on the form.

d. Set the Condition to True.

8. In the Action section below the Condition field, we want to accomplish the following:

l Update values for the prospect and save the values to CampusNexus Student.
l Create a Portal account and send an email with the credentials to the prospective student.
l Send an email to the prospective student detailing the next steps in the application process.

The workflow activities for these tasks will be placed in a Sequence activity.

Drag a Sequence activity from the Toolbox into the Action section. Specify the Display Name: Assign Val-
ues

9. Drag 7 Assign activities into the "Assign Values" sequence.

(Click the Show button to view the preceding steps in a looping animated gif.)

Specify the following properties: (each row in the table below represents an Assign activity)

Note: In this example, we are hard-coding the assignments to simplify the workflow definition. In a live envir-
onment, you would use variables and the LookupReferenceItem activity.

Forms Builder Version 3.6.1 598 Help Guide

These assignments provide values for required fields in prospect inquiry records. Query your CampusNexus
Student database to obtain appropriate values for your environment. See CampusNexus Student entities ref-
erence Prospect Inquiry and Student.

Assign Display Name "To" Field Value

1 Assign School Status prospectInquiryEntity.Student.SchoolStatusId 88

2 Assign Lead Type prospectInquiryEntity.LeadTypeId 11

3 Assign Lead Source prospectInquiryEntity.LeadSourceId 711

4 Assign Admin Rep prospectInquiryEntity.AssignedAdmissionsRepId 28

5 Assign Country ID prospectInquiryEntity.Student.CountryId 10

6 Assign Lead Date prospectInquiryEntity.LeadDate DateTime.Now

7 Set as Current Inquiry prospectInquiryEntity.IsCurrentInquiry True

10. Drag a LogLine activity below the "Assign Values" sequence. This activity writes the assigned prospect inquiry
values to the log. Specify the following properties:

a. Display Name: Log Prospect Inquiry Values

b. Text: Newtonsoft.Json.JsonConvert.SerializeObject(prospectInquiryEntity, New-
tonsoft.Json.Formatting.Indented)

c. Level: Information

You may need to import a reference to the Newtonsoft.Json if the LogLine activity shows an error after com-
pleting the steps above.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 599 Help Guide

11. Drag the SaveEntity activity below the LogLine activity.

In the dialog box, select Browse for Types, select Cmc.Nex-
us.Admissions.Entities.ProspectInquiryEntity, and click OK.

In the Properties pane for the SaveEntity activity, Specify the following properties:

a. Entity: prospectInquiryEntity

b. ValidationMessage: formInstance.ValidationMessages

12. Drag a LogLine activity below the SaveEntity activity. This LogLine activity writes the student ID values to the
log. Specify the following properties:

a. Display Name: Log Student ID

b. Text: environment.NewLine + Environment.NewLine + "The student ID is: " + pro-
spectInquiryEntity.StudentId.ToString + Environment.NewLine + Environment.NewLine

c. Level: Information

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 600 Help Guide

13. The next section of the workflow creates a Portal account for the prospective student. The workflow activities
used to create the Portal account require several variables.

Select theVariables tab below the Designer pane and create variables. Specify the following properties:

Name
Variable
type

Scope Default

UserID String Campus University
RFI

Role String Campus University
RFI

“STUD”

Culture String Campus University
RFI

“en-US”

Key String Campus University
RFI

"JkL0sPc="

URL Int32 Campus University
RFI

10

Forms Builder Version 3.6.1 601 Help Guide

Name
Variable
type

Scope Default

WebRoleID Int32 Campus University
RFI

1

Password String Campus University
RFI

"DAA4496B6AC1B0C8FEEE6BE825854F05E78765F0"

(Click the Show button to view the preceding steps in a looping animated gif.)

14. Drag a Sequence activity below the "Log Student ID" LogLine activity. Rename the sequence to Create
Portal Account.

15. Drag the following activities into the "Create Portal Account" sequence.

Assign Activity

a. Display Name: Assign ID

b. To field: UserID

Forms Builder Version 3.6.1 602 Help Guide

c. Value: prospectInquiryEntity.Student.FirstName + "." + pro-
spectInquiryEntity.Student.LastName

ExecuteQuery Activity

a. Display Name: Create Account

b. Connection string name: “<dbConnections> ” (Enter the connection string displayed in your About
Forms Builder window.)

c. Command: "exec sproc_School_Configuration_Admin_AddUser @LastName = '"& pro-
spectInquiryEntity.Student.LastName & "', @FirstName = '" & pro-
spectInquiryEntity.Student.FirstName &"', @eMail = '" &
prospectInquiryEntity.Student.EmailAddress & "', @UserCode = '" & UserID & "', @Pwd = '" &
Password & "', @Key = '" & Key & "', @DefaultCulture = '" & Culture & "', @wpURLID = " &
URL & ", @CampusID = " & prospectInquiryEntity.CampusId & ", @C2kID = " & pro-
spectInquiryEntity.StudentId & ", @Role = '" & Role & "', @wpWebRoleID = " & WebRoleID &
""

SendMail Activity

a. Display Name: SendMail to Student with Portal Credentials

b. From: “<campusuniversity@campusmgmt.com>” (Enter the email address of your institution.)

c. To: prospectInquiryEntity.Student.EmailAddress

d. Subject: "Campus University - Portal Account Information"

e. Body: "Dear " + prospectInquiryEntity.Student.FirstName + ", " + Environment.NewLine +
Environment.NewLine + "Below are your login credentials for the Campus University
Portal. You can change your password after you log in." + Environment.NewLine + Envir-
onment.NewLine + "Your login Username is: " + UserID + Environment.NewLine + Envir-
onment.NewLine + "Your Password is: nexus123" + Environment.NewLine +
Environment.NewLine + "Thank you for starting your journey with Campus University!"

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 603 Help Guide

16. Select the End link at the bottom of the transition to complete the triggers to occur when the form is sub-
mitted.

17. Drag the SendMail activity into the Entry section of the End state. Specify the following properties:

a. Display Name: SendMail with link to Online Application

b. From: “<campusuniversity@campusmgmt.com>” (Enter the email address of your institution.)

c. To: prospectInquiryEntity.Student.EmailAddress

d. Subject: "Welcome to Campus University"

e. Body: "Dear " + prospectInquiryEntity.Student.FirstName + "," +Environment.NewLine +
Environment.NewLine + "Thank you for your interest in Campus University. If you are
ready to begin your education journey, go to: http://localhost:<port>/#/renderer/227 to
complete the Online Application process." + Environment.NewLine + Envir-
onment.NewLine + "Thank you, " + Environment.NewLine + "The Admissions Team"

18. Confirm there are no errors in the Error panel.

19. Click Publish and select Enable This Workflow Version? Click OK to confirm.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 604 Help Guide

Submit the RFI Form
1. Open a different browser and point to the URL for the Sequence List.

(http://<server>:<port>/#/sequencelist or https://<server>:<port>/#/sequencelist)

2. Use the search box above the Sequence Name column to find theCampus University - Request for
Information sequence.

3. Scroll to the right and click to view the sequence.

4. Click Next on the Welcome Screen.

5. Complete the RFI form using your student data.

Note: For the student information, you might want to use data obtained from a random name generator.

Select these values for the following fields:

a. Campus: <Select a Campus>

b. Email: <A valid email for you>

Forms Builder Version 3.6.1 605 Help Guide

c. Phone Number/Mobile Number: <Enter the same number for both

d. Program: <Select a program>

6. Select Start Your Journey!

7. Confirm that you received a Confirmation Message.

(Click the Show button to view the preceding steps in a looping animated gif.)

Validate the Data in the Web Client
1. Open the Web Client for CampusNexus Student in another browser.

2. Sign in using your user name and password.

3. Select Students from the Home Page.

4. In the Search bar, search for your student’s last name.

5. Click on theName link for your student to access the student’s information.

6. Validate that you received the following emails.

Forms Builder Version 3.6.1 606 Help Guide

Check the Renderer Log
1. Navigate to: \\<server>\c$\logs and open the FormsBuilderRenderer file that has today's date.

2. Navigate to the bottom of the file (Ctrl + End) and then scroll up until you see the log lines from your work-
flow.

Forms Builder Version 3.6.1 607 Help Guide

FERPA Form
In this exercise, we will create a form for the student to complete for the Release of Information (FERPA). This is a
simplified form that will insert the person information in the Address folder as type FERPA so the student’s FERPA
Directory Information can be further updated allowing the person access.

The screen captures in this topic show an earlier Forms Builder version. While the UI has been updated, the basic
functionality is unchanged.

Build the Form
1. Open your browser and point to the Forms Builder URL.

2. Sign in using your user name and password.

3. On the Forms Builder home page, click the Form Designer tile. Products (if applicable), Entities and Forms are
loaded into Forms Builder.

4. In the Select Provider drop-down list, select Student.

Note: This step is applicable only if your Forms Builder installation uses the databases of both CampusNexus
CRM and CampusNexus Student.

5. Set up the column layout for the form:

a. In the Column drop-down list, select 2 Columns and click New. A 2-column panel is added to the Lay-
out pane.

b. In the Column drop-down list, select 1 Column and click to add a new panel to the form layout.

c. In the Column drop-down list, select 3 Columns and click to add a new panel to the form layout.

d. In the Column drop-down list, select 2 Columns and click to add a new panel to the form layout.

You should have a total of 4 panels in the Layout pane.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 608 Help Guide

6. From the Components tab, drag a Text Box into the first column of the first panel. Specify the following
properties:

a. Label: Full Name

b. Model: vm.models.FullName

c. Read-Only: true

We are going to bind this field to the studentEntity in workflow using an In/Out argument and populate the
text box with the First Name and Last Name on the studentEntity.

7. On the Fields tab, select the select the Student entity.

8. Drag the Student Number into the second column of the first panel. The Read-Only property should be set
to true.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 609 Help Guide

9. From the Components tab, drag two HTML components into the second panel. Specify the following prop-
erties:

a. First HTML component, HTML property:

<i>In compliance with the Department of Education’s “Family Educational Rights and
Privacy Act” (FERPA), information in your student record may not be released to a third
party (parents, guardians, spouse, sponsor, etc.) without your written permission except
as provided by law (See EC 76243, EC 76244).</i>

b. Second HTML component, HTML property:

I grant permission to Campus University to release information about my educational
record to the individuals listed below. This permission will remain in effect until revoked in
writing. This permission does NOT cover financial records maintained in the Financial Aid
Department.

10. On the Fields tab, select the select the Student Relationship Address entity.

11. Drag the First Name, Last Name, and Relation to Student fields into the third panel.

12. Change the Required property for all three fields to true.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 610 Help Guide

13. From the Components tab, drag a Checkbox into the first column of the fourth panel. Specify the following
properties:

a. Label: I authorize the Release of Information to the person listed above.

14. Drag theDate Picker component into the second column of the fourth panel. Specify the following prop-
erties:

a. Required: true

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 611 Help Guide

15. Click Save to save what you have done so far on your form. Specify the following properties:

a. Form Name: Release of Information

b. Title: Release of Information

Note: The title is optional. When a title is specified, it is displayed on the rendered form.

16. Click to return to the Forms Builder home page.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 612 Help Guide

Create a Sequence
1. On the home page of Forms Builder, select the Sequence Designer tile.

2. Click New. A new panel is added to the Layout pane.

3. In the search bar of the Forms pane, search for theRelease of Information form and drag it into the Layout
pane.

4. Save the sequence. Specify the following properties:

a. Sequence Name: Release of Information

b. Title: Release of Information

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 613 Help Guide

Edit the Workflow
1. In Sequence Designer, in the Sequences pane, locate and select theRelease of Information sequence.

2. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

3. Double-click the StateMachine label and rename it to Release of Information.

4. Select the icon of the last state to give it the focus and press the right arrow key a few times to move the
state to the right. This helps to organize the icons in the workflow to better navigate.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 614 Help Guide

5. Hide the ribbon in Workflow Composer to maximize the Designer pane and double-click the icon on the first
state in the workflow.

6. Drag a Sequence activity into the Entry section of the state. Rename the Sequence to Find Student.

7. Create aVariable. We want to find the student who is completing the form to display values back to our
Release of Information form. Specify the following properties:

a. Name: studentid

b. Variable type: Int32

c. Scope: Release of Information

8. Drag the LookupUser activity from the Toolbox into the Sequence. We use this activity to find the student
completing the form. Specify the following properties:

a. DisplayName: Lookup Student

b. UserId: studentid

c. UserName: formInstance.UserName

d. ValidationMessages: formInstance.ValidationMessages

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 615 Help Guide

9. We want to get data from the studentEntity so we can populate some fields on our form. The GetEntity activ-
ity will accomplish this.

a. Drag theGetEntity activity from the Toolbox into the Action section below the LookupUser activity.
The "Select Types" dialog for the GetEntity activity is displayed.

b. Click thedrop-down list in the Select Type window and select Browse for Types. The "Browse and
Select a .Net Type" window is displayed.

c. In the Type Name field, paste StudentEntity (or navigate to Cmc.Nexus.Common.Contracts >
Cmc.Nexus.Common.Entities > StudentEntity) and click OK.

d. Click OK in the "Select Types" dialog.

e. Open the Properties pane for the GetEntity activity. Specify the following properties:

l EntityId: studentid (This is the variable created above.)

l Result: studentEntity

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 616 Help Guide

10. Create an Argument to bind the "Full Name" text box to the workflow. Specify the following properties:

a. Name: FullName

b. Direction: In/Out

c. Argument type: String

11. Drag an Assign activity below the GetEntity activity. Specify the following properties:

a. Display Name: Assign Full Name

b. To field: FullName

c. Value: studentEntity.FirstName + " " + studentEntity.LastName

Note: This will push the first and last name of the student to the "Full Name" text box on our form.

12. Drag a LogLine activity below the Assign activity. This LogLine activity writes the assigned student entity val-
ues to the log. Specify the following properties:

a. Display Name: Log Student Entity Values

b. Text: Newtonsoft.Json.JsonConvert.SerializeObject(studentEntity,

Forms Builder Version 3.6.1 617 Help Guide

Newtonsoft.Json.Formatting.Indented)

c. Level: Information

You may need to import a reference to the Newtonsoft.Json if the LogLine activity shows an error after com-
pleting the steps above.

13. Drag theCreateEntity activity from the Toolbox below the LogLine activity. The "Select Types" dialog for the
CreateEntity activity is displayed.

a. Click thedrop-down list in the Select Type window and select Browse for Types. The "Browse and
Select a .Net Type" window is displayed.

b. In the Type Name field, paste StudentRelationshipAddressEntity (or navigate to Cmc.Nex-
us.Common.Contracts > Cmc.Nexus.Common.Entities > StudentRelationshipAddressEntity) and click
OK.

c. Click OK in the "Select Types" dialog. The CreateEntity activity is added below the LogLine activity.

d. Select theCreateEntity activity to give it the focus. Open the Properties pane and in the Result field,
specify studentRelationshipAddressEntity.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 618 Help Guide

14. Select theNext transition at the bottom of the sequence to transition to the form.

15. We want to change label on the transition in the workflow and the wording on the button on the form.

a. Change the label of the transition to Submit.

b. Change the label of the WaitForFormBookmark activity in the Trigger section of the transition to Sub-
mit. The Display Name of the WaitForFormBookmark activity will be the label of the button on the
form.

c. Set the Condition to True.

16. Drag a Sequence activity in the Action section of the transition. Rename the sequence to Create Student
Relationship Address.

17. Drag an Assign activity into the sequence. Specify the following properties:

a. To field: studentRelationshipAddressEntity.StudentId

b. Value: studentEntity.Id

18. Drag anotherAssign activity into the sequence. Specify the following properties:

a. Display Name: Assign Address Type

b. To field: studentRelationshipAddressEntity.AddressTypeId

c. Value: 25

19. Drag a LogLine activity below the Assign activity. Specify the following properties:

a. Display Name: Log Student Relationship Values

b. Text: Newtonsoft.Json.JsonConvert.SerializeObject(studentRelationshipAddressEntity, New-
tonsoft.Json.Formatting.Indented)

c. Level: Information

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 619 Help Guide

20. Drag the SaveEntity activity below the LogLine activity.

In the dialog box, select Browse for Types, select Cmc.Nex-
us.Common.Entities.StudentRelationshipAddressEntity, and click OK.

In the Properties pane for the SaveEntity activity, Specify the following properties:

a. Entity: studentRelationshipAddressEntity

b. ValidationMessage: formInstance.ValidationMessages

21. Click the cookie trail at the top left of the Designer pane to return to the top level of the workflow flowchart.

22. Confirm there are no errors in the Error panel.

23. Restore the ribbon of Workflow Composer.

24. Click Publish and select Enable This Workflow Version? Click OK to confirm.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 620 Help Guide

Validate the Data in the Web Client
1. Open the Web Client for CampusNexus Student in another browser.

2. Sign in with your user name and password.

3. Click the Students tile.

4. Search for a student. Select the student by clicking on the name link.

5. Expand Contact Manager and click theRelated Addresses tile.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 621 Help Guide

Submit the Release of Information Form
1. Open a different browser and point to the URL for the Sequence List.

(http://<server>:<port>/#/sequencelist or https://<server>:<port>/#/sequencelist)

2. Use the search box above the Sequence Name column to find theRelease of Information sequence.

3. Scroll to the right and click to view the sequence.

4. Login as the student:

Username: April.McKeel

Password: nexus123

5. Complete the form as shown below and click Submit.

Forms Builder Version 3.6.1 622 Help Guide

6. Confirm that you received a Confirmation Message.

(Click the Show button to view the preceding steps in a looping animated gif.)

Forms Builder Version 3.6.1 623 Help Guide

Confirm the Updates in the Web Client
1. Open the Web Client for CampusNexus Student in another browser.

2. Sign in with your user name and password.

3. Click the Students tile.

4. Search for a student. Select the student by clicking on the name link.

5. Expand Contact Manager and click theRelated Addresses tile.

6. Confirm the Related Addresses was updated.

7. Confirm that if you try to add FERPA access information for a person that your person can be selected in the
drop-down list.

Check the Renderer Log
1. Navigate to: \\<server>\c$\logs and open the FormsBuilderRenderer file that has today's date.

2. Navigate to the bottom of the file (Ctrl + End) and then scroll up until you see the log lines from your work-
flow.

Forms Builder Version 3.6.1 624 Help Guide

Credit Card Payment Form
This topic shows how a form sequence for credit card payments could be designed. It also details the associated
workflow and shows the rendered sequence.

The screen captures in this topic show an earlier Forms Builder version. While the UI has been updated, the basic
functionality is unchanged.

Prerequisites
See Credit Card Payment component.

Create the Form Sequence
For a credit card payment sequence, we recommend creating one form to gather the payment data (e.g., name,
address, state, country, etc.), another form for the Credit Card Payment component, and a confirmation form that is
displayed when the user returns from the PayPal site.

1. In Form Designer, create the layout of the form to gather the payment data (form 1).

2. Define the properties for the form fields. In this example, the form fields are bound to the vm.-
models.studentEntity.

First Name

Forms Builder Version 3.6.1 625 Help Guide

Last Name

Forms Builder Version 3.6.1 626 Help Guide

Street Address

Forms Builder Version 3.6.1 627 Help Guide

City

Forms Builder Version 3.6.1 628 Help Guide

Email address

Forms Builder Version 3.6.1 629 Help Guide

Postal Code

Forms Builder Version 3.6.1 630 Help Guide

State

Forms Builder Version 3.6.1 631 Help Guide

Note that the Value List in the properties for the State field is defined as a "Workflow Initialized List".

Forms Builder Version 3.6.1 632 Help Guide

Country

3. Save the form.

4. Create the layout of the form with the Credit Card Payment component (form 2). This form contains the
"Make Payment" button that links to the payment form on the PayPal site.

5. Define the properties and bindings for the form fields. In this example, the Payment Date and Amount fields
are bound to the vm.models.depositEntity. The property settings for Credit Card Payment component con-
tain bindings for the vm.models.studentEntity, the vm.models.depositEntity, and vm.-
models.countryName.

Forms Builder Version 3.6.1 633 Help Guide

Payment Date

Amount

Forms Builder Version 3.6.1 634 Help Guide

Credit Card Payment

Forms Builder Version 3.6.1 635 Help Guide

The example above shows values for all properties (except Class), however, it is not necessary to specify val-
ues for all properties. The required properties for any credit card payment are typically:

l Payment Amount
l Payment Firstname
l Payment Lastname
l Payment Zip

For more detailed information about the properties, refer to the Credit Card Payment component.

6. Save the form.

7. Create a confirmation form that contains an HTML component with property settings similar to the example
below (form 3). Note that the syntax {{vm.models.depositEntity.Amount}} allows the form to display the
value of the Payment Amount property specified in the Credit Card Payment component above.

Forms Builder Version 3.6.1 636 Help Guide

8. Save the form.

9. In Sequence Designer, create and save an authenticated sequence that contains a welcome form and the 3
forms built above.

10. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

Forms Builder Version 3.6.1 637 Help Guide

Modify the Workflow
1. Create arguments to match the vm.models bindings defined in Credit Card Payment component above.

Forms Builder Version 3.6.1 638 Help Guide

Note: To prepopulate fields in the payment form, create additional arguments as needed and add cor-
responding Assign activities in the entry state of the first form in the workflow.

2. Create variables as needed. Our example creates a variable named "CountryLookup" that will be used to pop-
ulate the Single-select Search component used for the Country field.

3. In the Entry section of the Welcome form/state, add the activities needed to prepopulate the payment form.

Our example creates theDepositEntity and uses Assign activities for the following values:

depositEntity.DepositReceivedDate = datetime.Now

depositEntity.Amount = 50.00d

Forms Builder Version 3.6.1 639 Help Guide

Note: To prepopulate fields in the payment form based on existing database records, place a LookupUser
activity in the entry section of the Welcome form.

4. Optionally, add a LogLine activity below the Assign activities to capture the Transaction Id in the log. Specify
the following properties:

Text: "FormInstance.paymentInfo.transactionId: "&formInstance.PaymentInfo.TransactionId

Level: Information

5. Add a Sequence activity to the Exit section of the form that contains the Country field (form 1). The
Sequence will hold the workflow activities needed to populate the Single-select Search component for the
Country field.

6. Drag and If activity into the Sequence and specify the following Condition: stu-
dentEntity.CountryId.HasValue

7. Drag a LookupReferenceItem activity into the Then branch. Specify the following properties:

Reference Item Type = Country

Reference Item Id = studentEntity.CountryId.Value

Note: The CountryId integer value from the CampusNexus Student database needs to be converted to a
string (text) to pass it to the PayPal site. The highlighted value is populated from the Reference Item Type
drop-down list in the LoopupReferenceItem activity (or from the CampusNexus Student database if a
getEntity > StudentEntity activity is used to populate the bindings). The conversion from integer to string is
accomplished with the Assign activity that follows.

CountryName in assignment statement is the in/out argument bound to Country property in CreditCard com-
ponent

8. Drag an Assign activity into the Then branch. Specify the following properties:

countryName = CountryLookup.Name.Trim

9. Drag a Logline activity into the Then branch. Specify the following properties:

Forms Builder Version 3.6.1 640 Help Guide

Text: Environment.NewLine & "Country:" & countryName & " State:" & studentEntity.State

Level: Information

10. Double-click theNext transition below the form that contains the Credit Card Payment Component (form 2).

11. In the trigger section of the Next transition, add a Sequence activity and insert a WaitForFormBookmark
activity.

12. Add a VerifyCardPayment activity with the following properties:

Forms Builder Version 3.6.1 641 Help Guide

PaymentAmount: Amount

PaymentTransactionId: formInstance.PaymentInfo.TransactionId

ValidationMessages: formInstance.ValidationMessages

13. Drag an If activity below the WaitForFormBookmark activity.

a. In the Condition field, specify: formInstance.ValidationMessages.HasErrors

b. In the Then branch, add a LogLine activity. Specify the following properties:

Text: "Verify payment result: " & formInstance.ValidationMessages(0).Message

Level: Information

c. Below the LogLine, add CreateValidationItem activity with the following properties:

Message: "Something went wrong with the payment processing. Please contact cus-
tomer service to confirm that your payment was processed correctly."

Message Type: Error

d. In the Else branch, add a LogLine activity. Specify the following properties:

Text: "Payment verified using activity"

Level: Information

e. In the Condition field of the Next transition, specify: Not formIn-
stance.ValidationMessages.HasErrors

https://help.campusmanagement.com/WF/Content/Workflow/CreateValidationItem.htm

Forms Builder Version 3.6.1 642 Help Guide

Forms Builder Version 3.6.1 643 Help Guide

Use the following activities to post payments.

14. In the Action section of the previous activity, insert a sequence with aGetServiceInstance<> activity using
the <IStudentAccountTransactionService>. Create a variable for theResult OutArgument.

The variable must be of type IStudentAccountTransactionService as shown below:

15. Create variables named postRequest and postResponse as shown below.

16. Below the GetServiceInstance activity, drop an Assign activity for each row in the following table and specify
the indicated values:

"To" Field Value

postRequest.StudentId studentId

postRequest.TransactionAmount depositEntity.Amount

postRequest.TransactionDate depositEntity.DepositReceivedDate

postRequest.PaymentMode PaymentMode.Normal

17. Insert a LookupCurrentEnrollmentPeriod activity below the Assign activities. Use the "studentId" variable
as InArgument and the "currEnroll" variable as OutArgument for the LookupEnrollmentPeriod activity.

Forms Builder Version 3.6.1 644 Help Guide

Define the "currEnroll" variable as shown below:

18. Insert Assign activities below the LookupEnrollmentPeriod activity using the following attributes:

"To" Field Value

postRequest.StudentEnrollmentPeriodId currEnroll.Id

postResponse AcctSvc.PostAccountTransactionPayment(PostRequest)

Note: If cashiering is enabled, additional assignment statements will be needed.

19. (Optional) Insert a LogLine activity. Specify the following properties:

Text: Newtonsoft.Json.JsonConvert.SerializeObject(postRe-
sponse,Newtonsoft.Json.Formatting.Indented)

Level: Information

Publish and enable the workflow.

Test the Rendered Sequence
1. Access the sequence in the Sequence List.

2. Log in to Portal.

3. Complete the form that gathers the payment information (form 1) and click Next.

Forms Builder Version 3.6.1 645 Help Guide

4. On the next form, note that the Payment Date and Amount fields are prepopulated based on the workflow
definition. Click theMake Payment button.

5. Complete the payment form on the PayPal site and click Pay Now.

Refer to the following website to obtain credit card numbers for testing:
https://developer.paypal.com/docs/classic/payflow/integration-guide/?-
mark=test%20card%20numbers#credit-card-numbers-for-testing

https://developer.paypal.com/docs/classic/payflow/integration-guide?mark=test%20card%20numbers#credit-card-numbers-for-testing
https://developer.paypal.com/docs/classic/payflow/integration-guide?mark=test%20card%20numbers#credit-card-numbers-for-testing

Forms Builder Version 3.6.1 646 Help Guide

6. A confirmation page from PayPal is displayed. Click theReturn to Campus Management link (this is the
customized return link configured in PayPal).

Forms Builder Version 3.6.1 647 Help Guide

Note: If a user loses the Internet connection while on the PayPal receipt page and logs back in, the user will
be returned to the Make Payment form. The user will be charged again if the Make Payment button is clicked
again.

7. The confirmation form from your Forms Builder sequence is displayed.

Forms Builder Version 3.6.1 648 Help Guide

DocuSign Forms
You can configure Forms Builder to request signatures from students in DocuSign as they are filling out forms. Sig-
natures can be requested for one or many Forms Builder forms or any other documents supported by DocuSign.
The DocuSign integration requires username and password to be configured in Form Designer.

The integration of Forms Builder and DocuSign is out of the box functionality that is available once Forms Builder is
installed. No additional integration is needed. Customers will have to configure DocuSign as described in Move from
Test to Production for DocuSign to work with Forms Builder.

For information about supported file formats and limitations, see https://support.docusign.com/guides/ndse-user-
guide-supported-file-formats.

https://support.docusign.com/guides/ndse-user-guide-supported-file-formats
https://support.docusign.com/guides/ndse-user-guide-supported-file-formats

Forms Builder Version 3.6.1 649 Help Guide

DocuSign Settings
When Forms Builder is installed, it is installed without an account for DocuSign. Customers can create a free
developer account (sandbox) for test purposes at the following URLs: https://secure.docusign.com/signup/develop
or https://www.docusign.com/developer-center

Sandbox accounts operate in the DocuSign demo environment, which is identical to production except that doc-
uments sent through demo are not legally binding and have test stamps on them. Sandbox accounts do not expire
and have enterprise level features enabled so you can test everything before going live.

Customers wishing to integrate with DocuSign need to obtain their own licensing information with DocuSign to use
in a live environment. Based on the customer’s location, DocuSign assigns a region and provides the API URL and cre-
dentials to the customer. This information needs to be updated in the Properties pane of the Settings screen for the
DocuSign setting.

Important: Do not use your live account credentials in test mode.

1. On the Forms Builder home page, click the Settings tile and select DocuSign in the Settings pane. The Prop-
erties pane is populated with the DocuSign properties.

2. Complete the following fields in the Properties pane:

Name Value

API Password API password

API User Email API user's email address

Integrators Key CAMP-3cc6ae72-9093-4ac6-bbb3-f60d5874491c

The key is preconfigured by Campus Management Corp.

DocuSign Properties

https://secure.docusign.com/signup/develop
https://www.docusign.com/developer-center

Forms Builder Version 3.6.1 650 Help Guide

Name Value

REST
API URL

https://docusign.net/restapi

This the default DocuSign URL that gets stored in the database by the initial script (hard-
coded). The DocuSign eSignature REST API lets you eSign documents, request signatures,
and automate your forms and data.

This URLmay vary based upon the region of your account. Customers can contact their
DocuSign representative if they are not sure about the base URL for their account. The fol-
lowing link from DocuSign help provides different options: https://docs.docusign.com/

3. Specify theDocuSign Error Message Text in the Settings panel.

4. Save the settings.

5. Once the DocuSign configuration is complete, reset IIS or wait an hour for the changes to take effect.

https://docs.docusign.com/

Forms Builder Version 3.6.1 651 Help Guide

DocuSign Workflow Sample - Single Signer
The following procedure details a sample workflow and forms for a sequence that contains single signer.

Prerequisites

1. The DocuSign properties are configured in Forms Builder. See DocuSign Settings.

2. A form sequence with the necessary DocuSign components for a single signer is created. In our example, the
Anonymous property of the sequence is set to false.

Note: If you create a non-authenticated sequence (Anonymous=true), make sure that the user's email
address is included in the sequence. The email address is required as the DocuSign recipient address.

3. A form that contains an IFrame component is created. In our example, this form is named Default-Frame with
the following properties (case sensitive):

o Name = docuSignFrame
o Url = {{vm.models.frameUrl}}

The IFrame form can be part of the initial sequence; however, in the procedure below, we are adding the form
to the workflow.

We recommend that you copy the original Default-Frame form, edit the copy, and use it in your sequences.
Save a backup copy of your form.

Enhancements in Forms Builder 3.6

The DocuSign component provides additional values on the Type property: Approve, Attachment, Checkbox, Com-
pany, Date, Decline, Email, Email Address, Envelope Id, Number, Ssn, and Text.

The DocuSign component provides an automatic transition (auto-redirect) from the Default-Frame form to the con-
firmation form after a successful DocuSign session. The auto-redirect obsoletes the "DocuSign Confirmation Mes-
sage Text" setting.

The auto-redirect depends on a forward direction in the WaitForFormBookmark activity in the transition after the
DocuSign redirect state (typically Default-Frame), in particular if DisplayName has been modified.

l If there is only a single button and DisplayName has been customized but Transition Type was left as
"Default", the auto-redirect moves forward to next form state.

l If there are two buttons and DisplayName(s) have been customized but Transition Type was left as "Default",
the auto-redirect will assume the rightmost button (alphabetically last) is the transition for next state.

Best Practice is always to specify Display Order and Transition Type (“MoveForward” or “MoveBack”) when button
Display Name(s) have been customized so behavior is known. The Transition Type of “Default” was kept for com-
patibility for forms built prior to Transition Type being available on WaitForFormBookmark with default Display
Names "Next" and "Back”.

Forms Builder Version 3.6.1 652 Help Guide

Create the Workflow

Open the Workflow and Review Arguments, Variables, and Logging Requirements

1. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

2. In Workflow Composer, drag the State icons and Transition lines to so that you can easily locate each item in
the StateMachine workflow.

The workflow requires the following arguments and variables. You can create these arguments and variables before
working on the activities, or you can add them when they are needed for a specific activity (as described below).

Keep in mind that arguments are passed in JSON format and that JSON elements are case sensitive.
Be sure to match the casing of argument names in Workflow Composer and Form Designer.

Arguments

Variables

LogLine Activities

While testing and troubleshooting the workflow, we recommend adding LogLine activities at critical stages within the
workflow. The following expression will provide logging for specific objects (replace <object> with the object name):

Newtonsoft.Json.JsonConvert.SerializeObject(<object>, Newtonsoft.Json.Formatting.Indented)

For example, to capture errors related to the CreateDocuSignRequest activity, you would place a LogLine activity
with the following expression below the CreateDocuSignRequest activity.

Newtonsoft.Json.JsonConvert.SerializeObject(DocuSignRequest, Newtonsoft.Json.Formatting.Indented)

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

Capture the Login User Information

Note: If your sequence is non-authenticated (Anonymous=true), the LookupUser and GetEntity activities are not

Forms Builder Version 3.6.1 653 Help Guide

applicable, but a CreateEntity activity may be needed instead. Be sure that any anonymous sequence includes the
user's email address. It is required as the DocuSign recipient address.

The first step is to capture the information of the user who logged in to the form.

1. Create a variable named studentId of Type Int32.

2. Drop a LookupUser activity in the Entry area of the Welcome form.

l In the UserId property, specify studentId. This is the variable created in the previous step.
l In the UserName property, specify formInstance.UserName. The user name is retrieved from the

login account information.

3. Drop aGetEntity activity in the below the LookupUser activity.

l In the EntityId property, specify studentId.
l In the Result property, specify studentEntity.

Workflow Composer automatically wraps the activities in a Sequence.

4. Save the workflow locally and continue with the next set of steps.

Persist the Workflow Instance After Collecting the Form Data

Since the workflow can be busy for a long time, we recommend that you persist the workflow instance before

Forms Builder Version 3.6.1 654 Help Guide

creating the PDF.

1. Double-click theNext transition from the form that is used to collect the data, CMC_Student_Personal Info.

2. Drag a Persist activity into the Trigger area below the Next activity. The Persist activity does not require any
properties to be specified.

Workflow Composer automatically wraps the Next and Persist activities in a Sequence.

3. Save the workflow locally and continue with the next set of steps.

Add an IFrame Form to the Workflow

1. In Workflow Composer, click theArguments tab.

2. Create an argument named frameUrl. Set the Direction to In/Out. Set the Type to String.

 Be sure to use the exact casing shown here.

Forms Builder Version 3.6.1 655 Help Guide

3. Click the StateMachine link in the Designer pane.

4. Drop a State activity onto the transition line after the Next transition from the form that contains the
DocuSign components (CMC_Student_Personal Info).

5. Change the default name of the State activity to the name of the form that contains the IFrame. In our case,
the name is Default-Frame.

6. Save the workflow locally and continue with the next set of steps.

Create a PDF of the DocuSign Form

In the following steps we will create a set of activities in theDefault-Frame State, which represents the IFrame form.

1. Double-click the State icon of the form that contains the IFrame component.

2. Create a variable named URL. Set the Variable type to String. Set the Scope to StateMachine. This variable
will be assigned to the PDF that will be created from the form.

Forms Builder Version 3.6.1 656 Help Guide

Note: As of Forms Builder 3.5, the URL input argument for the PrintUrlToPdf activity is optional. When the
URL is not specified, the activity constructs the URL for all forms traversed in the sequence.

3. Drop an Assign activity into the Entry area of the State.

a. In the To field, specify the variable nameURL.

b. In the Value field, specify the following:

formInstance.RendererBaseUrl + "#/viewCreator/" + formIn-
stance.WorkflowDefinitionId.ToString + "/forms=CMC_Student_Personal+Info"

Where "/forms=CMC_Student_Personal+Info" indicates the Forms Builder form that contains the
DocuSign component.

Notes:

l If the form name has a space, replace the space with a + sign as shown in the example: CMC_Stu-
dent_Personal+Info

l If multiple forms are sent to DocuSign, specify a comma-separated list of form names in the
"/forms=" attribute.

4. Drop a Persist activity below the Assign activity.

5. Create a variable with a name like Pdf. Set the Scope to StateMachine. This variable will hold the document
image created from the form.

Note: Make sure you use the same variable name when you reference this variable later in the workflow.
(This applies to any other variable.)

a. In the Variable type field, select Array of [T] and select Browse for Type.

b. In the "Browse and Select a .Net Type" window, specify "byte", select the System variable "Byte", and

Forms Builder Version 3.6.1 657 Help Guide

click OK.

6. Drop a PrintUrlToPdf activity below the Persist activity.

Specify the properties for the activity as follows:

l PdfDocument = Pdf (This is the name of the variable created above.)

l Url = URL (This is the name of the variable created above.)

Note: As of Forms Builder 3.5, the URL input argument for the PrintUrlToPdf activity is optional.
When the URL is not specified, the activity constructs the URL for all forms traversed in the sequence.

l Validation Messages = formInstance.ValidationMessages

Forms Builder Version 3.6.1 658 Help Guide

7. Save the workflow locally and continue with the next set of steps.

Get the DocuSign Configuration and Pass the Recipient Information

In the following steps we will continue to add activities to theDefault-Frame State, which represents the IFrame
form.

1. Create a variable named DocuSignConfig. Set the Scope to StateMachine.

In the Variable type field, select Browse for Type. In the "Browse and Select a .Net Type" window, scroll
down to Cmc.Nexus.FormsBuilder.Contracts > Cmc.Nexus.FormsBuilder.Entities and select
DocuSignConfig.

2. In the State of the IFrame form, drop aGetDocuSignConfig activity below the PrintUrlToPdf activity.

Specify the properties for the activity as follows:

l DocuSignConfig = DocuSignConfig
l Validation Messages = formInstance.ValidationMessages

The GetDocuSignConfig activity retrieves the User Name, Password, Integrators Key, and REST API Url from
the DocuSign settings in Forms Builder. These values enable the workflow to log in to DocuSign.

As of Forms Builder 3.4, the DocuSignConfig.TestMode assignment (=true or =false) is no longer supported
or functional. Assign statements containing it can be deleted.

Forms Builder Version 3.6.1 659 Help Guide

To process the DocuSign request, the Email Subject and Return URL properties need to be assigned to the
DocuSignConfig variable. These properties are required.

The only two properties for the DocuSignConfig object that should ever bemodified in the workflow definition
are EmailSubject and ReturnUrl. The values for all the other properties are retrieved from the DocuSign Set-
tings saved in the database. Any modification done to the values for the other DocuSignConfig properties in
the workflow definition will likely result in errors when the DocuSign portion of the sequence is executed.

3. Create the following variables:

Variable Name Type Scope Default

DocuSignRe-
cipient

Cmc.Nex-
us.FormsBuilder.Entities.DocuSignRecipient

StateMachin-
e

New DocuSignRe-
cipient

DocuSignDocu-
ment

Cmc.Nex-
us.FormsBuilder.Entities.DocuSignDocument

StateMachin-
e

New
DocuSignDocu-
ment

DocuSignRequest Cmc.Nex-
us.FormsBuilder.Entities.DocuSignRequest

StateMachin-
e

N/A

4. Below the GetDocuSignConfig activity, drop an Assign activity for each row in the following table and type
the indicated values:

"To" Field Value Notes

DocuSignConfig.EmailSubject "CMC Campus DocuSign Testing" This is the email that the end user
will receive after the signing process
is done.

DocuSignConfig.ReturnUrl formInstance.RendererBase
Url+"#/docusigncomplete"

This is the URL that will display the
document after the signing process
is done.

DocuSignConfig.BasePath "https://demo.docusign.net/restapi" This is the URL that will display the
document after the signing process
is done.

DocuSignDocument.DocumentId "1" Whenmultiple DocuSign doc-
uments are included in the same
DocuSign envelope, every doc-
ument needs a unique Id. In this
example, there is only one doc-
ument.

DocuSignDocument.Name "StudentInfoPdf.pdf" Name of the signed document.

Forms Builder Version 3.6.1 660 Help Guide

"To" Field Value Notes

DocuSignDocument.Content Pdf Name of the variable that holds the
document image (see Create a PDF
of the Form). In our example the
name of the variable is Pdf.

DocuSignRecipient.FirstName studentEntity.FirstName First name of the user who sub-
mitted the signed document.

DocuSignRecipient.LastName studentEntity.LastName Last name of the user who sub-
mitted the signed document.

DocuSignRecipient.Email "tester@campusmgmt.com" Email address of the person who will
receive the signed DocuSign doc-
ument.

DocuSignRecipient.SignerId "1" The SignerId shouldmatch the
Signer property in the DocuSign
component on the form. Allowed val-
ues are "1" to "5".

5. Save the workflow locally and continue with the next set of steps.

Create the DocuSign Request and Specify the IFrame URL

In the following steps we will continue to add activities to theDefault-Frame State, which represents the IFrame
form.

1. Drop theCreateDocuSignRequest activity below the previous activity.

Specify the properties for the CreateDocuSignRequest activity using the names of the variables created above
as follows:

Forms Builder Version 3.6.1 661 Help Guide

Warning: Do not enter anything in ResumeBookmark if you are creating Single Signer workflows. This could
cause InstanceHandleConflictExceptions and aborted workflows. Fill this in only for Multi-Signer workflows.

The out argument DocuSignRequest returns the envelope Id and URL of the signed DocuSign document.

Forms Builder Version 3.6.1 662 Help Guide

2. Drop an Assign activity below the CreateDocuSignRequest activity.

a. In the To field, specify frameUrl. (This is the argument associated with the IFrame form.)

 Be sure to use the exact casing shown here.

b. In the Value field, specify DocuSignRequest.Url.

3. Drop anotherAssign activity into the workflow.

a. In the To field, specify EnvelopId.

b. In the Value field, specify DocuSignRequest.EnvelopeId.

Notes:

l This assignment allows for the reuse of the EnvelopeId. If EnvelopeId has a value, it will be reused; if
not a new one is generated (and can be assigned to a variable for reuse).

l This assignment is needed only for the primary/single signer (logged in Student) use cases. Signatures
for multiple signers will be done outside of the workflow within DocuSign.

4. Save the workflow locally and continue with the next set of steps.

Forms Builder Version 3.6.1 663 Help Guide

Receive the Signed DocuSign Document

In the following steps we will create activities in the Submit transition which follows the IFrame form.

1. Double-click the T1 transition after theDefault-Frame state and rename it as Submit.

2. Drop aWaitForFormBookmark activity into the Trigger area of the Submit transition.

3. Rename the WaitForFormBookmark activity as Submit.

4. Create a variable named SignedDocument. In the Variable type field, select DocuSignDocument. Set the
Scope to StateMachine.

5. Drop aGetSignedDocument activity below the Submit activity.

Specify the properties for the activity as follows:

l DocuSignDocument = SignedDocument (This is the name of the variable created above.)
l EnvelopeId = DocuSignRequest.EnvelopeId
l Validation Messages = formInstance.ValidationMessages

Workflow Composer automatically wraps the activities in a Sequence.

6. Save the workflow locally and continue with the next set of steps.

Note: If it is necessary to troubleshoot the receipt of the signed document, you might want to consider the pro-
cedure of Write the PDF to Disk.

Create and Save the Document in CampusNexus Student

To convert a DocuSign document to a DocumentEntity that can be attached to a record in CampusNexus Student,
add CreateDocument and SaveDocument activities to the workflow. These activities will be placed in the Submit

Forms Builder Version 3.6.1 664 Help Guide

transition.

1. Create a variable named Doc. Set the Scope to StateMachine.

In the Variable type field, select Browse for Type. In the "Browse and Select a .Net Type" window, scroll
down to Cmc.Nexus.Crm.Contracts > Cmc.Nexus.Crm.Entities and select DocumentEntity.

2. Drop a CreateDocument activity below the GetSignedDocument activity.

Specify the required properties for the activity as follows:

l Module = Select a Module from the drop-down list.
l Document Type = Select a Type (Template) from the drop-down list.
l Document Status = Select a Type from the drop-down list.
l Student = Specify a Student Id or use a variable.
l Due Date = Specify a date or use a variable, e.g., DateTime.Now
l Document (OutArgument) = Doc (This is the variable created above for the DocumentEntity.)
l Validation Messages = formInstance.ValidationMessages

Forms Builder Version 3.6.1 665 Help Guide

3. Below the CreateDocument activity, drop an Assign activity for each row in the following table and type the
indicated values:

"To" Field Value

Doc.DocumentImage SignedDocument.Content

Doc.OriginalFileName "Signedpdf.Pdf"

Doc.ImageType "Pdf"

Doc.IsDocumentAddedManually true

4. Drop a SaveDocument activity below the CreateDocument activity.

Specify the properties for the SaveDocument activity as follows:

Forms Builder Version 3.6.1 666 Help Guide

l Document (InOutArgument) = Doc (This is the variable created above for the DocumentEntity.)
l Validation Messages = formInstance.ValidationMessages

5. In the Condition field of the Submit transition, specify the following (to prevent users from submitting a form
that has validation errors): Not formInstance.ValidationMessages.Has Errors

6. Save the workflow locally and continue with the next set of steps.

Final Steps

1. Click Publish. The New Workflow Definition Version window is displayed.

2. If you want the workflow to be run as soon as the event occurs on the entity, select Enable This Workflow
Version?, otherwise leave the check box cleared.

3. Click Save, then Cancel to close the publisher window.

4. In the Sequence List, select and complete the form that contains the DocuSign fields.

5. Verify that the signed DocuSign document is available at the return URL.

6. Verify that the signed document is added to the CampusNexus Student database.

Note: While testing your workflow, make sure that you terminate the previous instance of the workflow before run-
ning an updated version of the same workflow. In Workflow Composer, click Open Persisted Workflow, select
your workflow instance, and click Terminate.

Forms Builder Version 3.6.1 667 Help Guide

In Forms Builder 3.6 and later, persisted workflow instances can be deleted from the Sequence Designer workspace.
For more information, see Delete Persisted Workflow Instances.

Forms Builder Version 3.6.1 668 Help Guide

DocuSign Workflow Sample - Multiple Signers
The following procedure details a sample workflow and forms for a sequence that contains multiple signers.

Prerequisites

1. The DocuSign properties are configured in Forms Builder. See DocuSign Settings.

2. A form sequence is created. In our example, the sequence includes the following forms:

l Welcome

l CMC_Student_Personal Info— This is an admissions application form that collects the personal data of
a student and contains four DocuSign components (signature and date fields for two signers).

The signing process for the primary signer is the same as described in DocuSign Workflow Sample -
Single Signer. The signing process for the primary signer is an embedded process within the form win-
dow. For the secondary signer, DocuSign sends an email along with the document to be signed to the
secondary signer. The signing process for primary and secondary signer takes place within the same
DocuSign request and the same envelop. DocuSign returns events when each signer signs the doc-
ument and when the document is complete. The workflow responds to these events.

l CoSigner — This form informs the student that a co-signer is needed and provides two text boxes for
the co-signer's name and email address.

l Default-Frame — This form contains an IFrame component with the following properties (case sens-
itive):
Name = docuSignFrame
Url = {{vm.models.frameUrl}}

We recommend that you copy the original Default-Frame form, edit the copy, and use it in your
sequences. Save a backup copy of your form.

l Default-DocuSignWait — This form is provided with the Forms Builder installation. It contains two
HTML components.

The first HTML component displays the text "Current user may close this browser tab. This page will
auto submit when all the signatures are collected from DocuSign."

The second HTML component contains the following JavaScript code which disables the Next button
until the co-signer's signature is received:

<script ng-if="!vm.models.signer2Complete" ng-cloak>
$(document).ready(function(){
var elem = $("[value='Automatically continues when all signatures col-
lected']");
elem.css("cursor", "not-allowed");

Forms Builder Version 3.6.1 669 Help Guide

elem.css("opacity", "0.65");
});
</script>

The Default-DocuSignWait form will be overwritten when Forms Builder is upgraded.
Copy the original form, edit the copy, and use it in your sequences. Save a backup copy of your form.

Note: Even though the Default-DocuSignWait form is provided for you, you must still add the Boolean
argument signer2Complete that enforces the wait. The argument needs to be added in the transition
after the DocuSignWait form.

The argument signer2Complete needs to be defined in the Arguments tab. Be sure to match the casing
in the JavaScript in the HTML component of the Default-DocuSignWait form. The argument is also
used in the CreateDocuSignRequest (see below).

Forms Builder Version 3.6.1 670 Help Guide

This logic can be repeated as needed for additional signers.

Enhancements in Forms Builder 3.6

The DocuSign component provides additional values on the Type property: Approve, Attachment, Checkbox, Com-
pany, Date, Decline, Email, Email Address, Envelope Id, Number, Ssn, and Text.

The DocuSign component provides an automatic transition (auto-redirect) from the Default-Frame form to the con-
firmation form after a successful DocuSign session. The auto-redirect obsoletes the "DocuSign Confirmation Mes-
sage Text" setting.

The auto-redirect depends on a forward direction in the WaitForFormBookmark activity in the transition after the
DocuSign redirect state (typically Default-Frame), in particular if DisplayName has been modified.

l If there is only a single button and DisplayName has been customized but Transition Type was left as
"Default", the auto-redirect moves forward to next form state.

l If there are two buttons and DisplayName(s) have been customized but Transition Type was left as "Default",
the auto-redirect will assume the rightmost button (alphabetically last) is the transition for next state.

Best Practice is always to specify Display Order and Transition Type (“MoveForward” or “MoveBack”) when button
Display Name(s) have been customized so behavior is known. The Transition Type of “Default” was kept for com-
patibility for forms built prior to Transition Type being available on WaitForFormBookmark with default Display
Names "Next" and "Back”.

In sequences for multiple signers, you must set Transition Type = MoveForward on the WaitForFormBookmark
activity in the transition from the Default-Frame form to the DocuSignWait form. See Transition from the IFrame
Form to the DocuSignWait Form.

Test the Multiple Signer Feature

To test the multiple signature feature with DocuSign, the test environment needs to meet the specific requirements.
DocuSign will try to call APIs on Renderer when secondary signers complete their signing process via email. This fea-
ture is referred to asWebhook and DocuSign Connect.

l If you are testing with a DocuSign account in test mode:

o Renderer must be hosted on port 80 or 443.

o Port 80 or 443 must be open on the firewall depending on which port Renderer is using for DocuSign
to communicate. You can request an exception for port 80 or 443 from your IT team for an IP address
range. The IP address ranges used for demo accounts are listed at this link: https://trust.-
docusign.com/en-us/trust-certifications/ip-ranges/

l If you are testing with a live DocuSign account:

o Renderer must be hosted on port 443 (https).

https://trust.docusign.com/en-us/trust-certifications/ip-ranges/
https://trust.docusign.com/en-us/trust-certifications/ip-ranges/

Forms Builder Version 3.6.1 671 Help Guide

o If hosting Renderer on port 443 is not possible, a DocuSign representative for your account will have
to make an exception.

Set Up DocuSign Account Preferences

The Multiple Signer feature requires a specific setting in your DocuSign account. To enable the feature, log into your
DocuSign account and navigate to Account Administration > Features. Select theDocuSign Connect check
box. This feature must be enabled for theWebHook functionality to work.

Another setting that is available in your CampusNexus Student account is found underManage Account > Email
Notifications. Here you configure who receives the DocuSign email when the institution is a signer or a sender.

Create the Workflow

Open the Workflow, Review Arguments, Variables, and Logging Requirements

1. Launch Workflow Composer and open the workflow. For more information, see Open the Workflow for a
Sequence.

2. In Workflow Composer, drag the State icons and Transition lines to so that you can easily locate each item in
the StateMachine workflow.

Forms Builder Version 3.6.1 672 Help Guide

The workflow requires the following arguments and variables. You can create these arguments and variables before
working on the activities, or you can add them when they are needed for a specific activity (as described below).

Keep in mind that arguments are passed in JSON format and that JSON elements are case sensitive.
Be sure to match the casing of argument names in Workflow Composer and Form Designer.

Arguments

Variables

Forms Builder Version 3.6.1 673 Help Guide

LogLine Activities

While testing and troubleshooting the workflow, we recommend adding LogLine activities at critical stages within the
workflow. The following expression will provide logging for specific objects (replace <object> with the object name):

Newtonsoft.Json.JsonConvert.SerializeObject(<object>, Newtonsoft.Json.Formatting.Indented)

For example, to capture errors related to the CreateDocuSignRequest activity, you would place a LogLine activity
with the following expression below the CreateDocuSignRequest activity.

Newtonsoft.Json.JsonConvert.SerializeObject(DocuSignRequest, Newtonsoft.Json.Formatting.Indented)

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

LookupUser and GetEntity

Note: If your sequence is non-authenticated (Anonymous=true), the LookupUser and GetEntity activities are not
applicable, but a CreateEntity activity may be needed instead. Be sure that any anonymous sequence includes the
user's email address. It is required as the DocuSign recipient address.

Use theWelcome form to retrieve the Student Id and Student Entity.

1. Double-click the icon of theWelcome state.

2. Create a variable named studentid of Type Int32.

3. Drop a LookupUser activity into the Entry area of the Welcome state.

l In theUserId property, specify the studentid variable.
l In theUserName property, specify formInstance.UserName.

4. Drop aGetEntity activity below the LookupUser activity.

l In the EntityId property, specify the studentid variable.
l In theResult property, specify studentEntity.

Forms Builder Version 3.6.1 674 Help Guide

5. Save the workflow locally and continue with the next set of steps.

Persist the Workflow Instance After Collecting the Form Data

Since the workflow can be busy for a long time, we recommend that you persist the workflow instance before cre-
ating the PDF.

1. Double-click theNext transition from the form that is used to collect the data, CMC_Student_Personal Info.

2. Set the Condition to True.

3. Drag a Persist activity into the Trigger area below the Next activity. The Persist activity does not require any
properties to be specified.

Workflow Composer automatically wraps the Next and Persist activities in a Sequence.

Forms Builder Version 3.6.1 675 Help Guide

4. Save the workflow locally and continue with the next set of steps.

Create a PDF of the DocuSign Form

In the following steps we add activities to the Next transition to create a PDF of the form.

1. Create a variable named URL. Set the Variable type to String. Set the Scope to StateMachine. This variable
will be assigned to the PDF that will be created from the form.

Note: As of Forms Builder 3.5, the URL input argument for the PrintUrlToPdf activity is optional. When the
URL is not specified, the activity constructs the URL for all forms traversed in the sequence.

2. Drop an Assign activity into the Entry area of the State.

a. In the To field, specify the variable nameURL.

b. In the Value field, specify the following:

formInstance.RendererBaseUrl + "#/viewCreator/" + formIn-
stance.WorkflowDefinitionId.ToString + "/forms=CMC_Student_Personal+Info"

Where "/forms=CMC_Student_Personal+Info" indicates the Forms Builder form that contains the
DocuSign component.

Notes:

Forms Builder Version 3.6.1 676 Help Guide

l If the form name has a space, replace the space with a + sign as shown in the example: CMC_Stu-
dent_Personal+Info

l If multiple forms are sent to DocuSign, specify a comma-separated list of form names in the
"/forms=" attribute.

3. Create a variable with a name like Pdf. Set the Scope to StateMachine. This variable will hold the document
image created from the form.

Note: Make sure you use the same variable name when you reference this variable later in the workflow.
(This applies to any other variable.)

a. In the Variable type field, select Array of [T] and select Browse for Type.

b. In the "Browse and Select a .Net Type" window, specify "byte", select the System variable "Byte", and
click OK.

4. Drop a PrintUrlToPdf activity below the Persist activity.

Specify the properties for the activity as follows:

l PdfDocument = Pdf (This is the name of the variable created above.)

l Url = URL (This is the name of the variable created above.)

Note: As of Forms Builder 3.5, the URL input argument for the PrintUrlToPdf activity is optional.
When the URL is not specified, the activity constructs the URL for all forms traversed in the sequence.

l Validation Messages = formInstance.ValidationMessages

Forms Builder Version 3.6.1 677 Help Guide

5. Save the workflow locally and continue with the next set of steps.

Get the DocuSign Configuration and Pass the Recipient Information

In the following steps we will continue to add activities to the Next transition from the CMC_Student_Personal Info
form.

1. Create a variable named DocuSignConfig. Set the Scope to StateMachine.

In the Variable type field, select Browse for Type. In the "Browse and Select a .Net Type" window, scroll
down to Cmc.Nexus.FormsBuilder.Contracts > Cmc.Nexus.FormsBuilder.Entities and select
DocuSignConfig.

2. Drop aGetDocuSignConfig activity below the PrintUrlToPdf activity.

Specify the properties for the activity as follows:

Forms Builder Version 3.6.1 678 Help Guide

l DocuSignConfig = DocuSignConfig
l Validation Messages = formInstance.ValidationMessages

The GetDocuSignConfig activity retrieves the User Name, Password, Integrators Key, and REST API Url from
the DocuSign settings in Forms Builder. These values enable the workflow to log in to DocuSign.

To process the DocuSign request, the Email Subject and Return URL properties need to be assigned to the
DocuSignConfig variable. These properties are required.

The only two properties for the DocuSignConfig object that should ever bemodified in the workflow definition
are EmailSubject and ReturnUrl. The values for all the other properties are retrieved from the DocuSign Set-
tings saved in the database. Any modification done to the values for the other DocuSignConfig properties in
the workflow definition will likely result in errors when the DocuSign portion of the sequence is executed.

3. Create the following variables:

Variable Name Type Scope Default

DocuSignRecipient Cmc.Nexus.FormsBuilder.Entities.
DocuSignRecipient

StateMachine New DocuSignRe-
cipient

DocuSignRecipient2 Cmc.Nexus.FormsBuilder.Entities.
DocuSignRecipient

StateMachine New DocuSignRe-
cipient

DocuSignDocument Cmc.Nexus.FormsBuilder.Entities.
DocuSignDocument

StateMachine New
DocuSignDocument

DocuSignRequest Cmc.Nexus.FormsBuilder.Entities.
DocuSignRequest

StateMachine N/A

4. Create the following argument:

l Name = signer2Complete
l Direction = In/Out
l Argument type = Boolean

5. Below the GetDocuSignConfig activity, drop an Assign activity for each row in the following table and type
the indicated values:

"To" Field Value Notes

DocuSignConfig.EmailSubject "CMC DocuSign Test at " +
DateTime.Now.ToString()

This is the email that the end user will
receive after the signing process is
done.

DocuSignConfig.ReturnUrl formInstance.RendererBaseUrl
+"#/docusigncomplete"

This is the URL that will display the
document after the signing process is
done.

Forms Builder Version 3.6.1 679 Help Guide

"To" Field Value Notes

DocuSignDocument.DocumentId "1" The SignerId shouldmatch the Signer
property in the DocuSign component
on the form. Allowed values are "1" to
"5".

DocuSignDocument.Name "Student Info Pdf" Name of the signed document.

DocuSignDocument.Content Pdf Name of the variable that holds the doc-
ument image (see Create a PDF of the
Form). In our example the name of the
variable is Pdf.

DocuSignRecipient.Name "RecipientName First" Name of the user who submitted the
signed document. This could be the stu-
dent name retrieved from the Stu-
dentEntity.

DocuSignRecipient.Email "tester@campusmgmt.com" Email address of the person who will
receive the signed DocuSign doc-
ument. This could be the email address
retrieved from the StudentEntity.

DocuSignRecipient2.Name "RecipientName Second" Name of the co-signer who submitted
the signed document. This could be a
parent name from the Stu-
dentRelationshipAddressEntity.

DocuSignRecipient2.Email "tester2@campusmgmt.com" Email address of the co-signer who will
receive the signed DocuSign doc-
ument. This could be the email address
retrieved from the Stu-
dentRelationshipAddressEntity.

DocuSignRecipient2.SignerId "2" The SignerId shouldmatch the Signer
property in the DocuSign component
on the form. Allowed values are "1" to
"5".

Forms Builder Version 3.6.1 680 Help Guide

"To" Field Value Notes

DocuSignRecipient2.RoutingOrder "2" In Forms Builder 3.6 and later, you can
set up a sequential routing order, where
each recipient receives the email noti-
fication once the previous recipient has
completed their action.

You can also have amix of sequential
and parallel routing. To set a parallel
order, such that some recipients
receive the document at the same
time, set the same value for the routing
order.

When you use a routing order, you can
also route an envelope to the same per-
sonmultiple times. For example, you
can send a document to student to
approve, then send it on to a parent to
sign, and finally send a copy the stu-
dent again.

Prerequisite: Youmust have per-
mission to create a routing order. See
Allow Sequential Signing.

Forms Builder Version 3.6.1 681 Help Guide

"To" Field Value Notes

DocuSignRecipient2.
VariableToSetOnComplete

"signer2Complete" The value "signer2Complete" is the
argument created in the previous step.
This argument is used as follows:

l On the DocuSignRecipient2 vari-
able — When the secondary
signer completes signing,
DocuSign will send an event to
the Forms Builder server, and
the Forms Builder server will set
the variable from false to true.

l In the ResumeBookmark prop-
erty of the
CreateDocuSignRequest activ-
ity —SeeNote on the
CreateDocuSignRequest activ-
ity. The string "Continue when
all signatures are collected" is
the value of the custom field
named "Bookmark" that is
returned by DocuSign.

l In the Done transition — See
Receive the Signed Document.

l In the JavaScript associated
with theDocuSignWait form.

Note: Do not use Vari-
ableToSetOnComplete in single signer
sequences.

6. Save the workflow locally and continue with the next set of steps.

Create the DocuSign Request and Specify the IFrame URL

In the following steps we will continue to add activities to the Next transition from the CMC_Student_Personal Info
form.

1. Drop theCreateDocuSignRequest activity below the previous activity.

Specify the properties for the CreateDocuSignRequest activity using the names of the variables created above
as follows:

Forms Builder Version 3.6.1 682 Help Guide

Notes:

l The expression for DocuSignRecipients passes multiple items (the primary and secondary recipient)
within an array.

l The ResumeBookmark value will be passed to DocuSign as a custom field. When the envelope has
been completed, DocuSign will return this flag and any process that has to happen after the bookmark
can resume automatically without any user intervention.

l The out argument DocuSignRequest returns the envelope Id and URL of the signed DocuSign doc-
ument.

Forms Builder Version 3.6.1 683 Help Guide

2. Drop an Assign activity below the CreateDocuSignRequest activity.

a. In the To field, specify frameUrl (This is the argument associated with the IFrame form.)

 Be sure to use the exact casing shown here.

b. In the Value field, specify DocuSignRequest.Url.

3. Save the workflow locally and continue with the next set of steps.

Transition from the IFrame Form to the DocuSignWait Form

The IFrame form (Default-Frame) will receive the DocuSign document with the first signature, but the signing process
is not yet complete. We want the workflow to continue with theDocuSignWait form upon receipt of the first sig-
nature. The workflow will pause on theDocuSignWait form until the second signature is received. If user closes the
form or logs out after submitting the first signature, upon return to the form, the workflow will display the
DocuSignWait form.

1. Double-click the transition from theDefault-Frame form to theDocuSignWait form.

2. In the Trigger area, name the WaitForFormBookmark as Continue.

3. Select the property Transition Type = MoveForward on the WaitForFormBookmark activity.

Forms Builder Version 3.6.1 684 Help Guide

4. Specify the Condition asNot formInstance.ValidationMessages.HasErrors.

5. Save the workflow locally and continue with the next set of steps.

Receive the Signed DocuSign Document

In the following steps, we will create activities in the Done transition which follows theDocuSignWait form. At this
point in the workflow, the second signature was received and the DocuSign document is complete.

1. Double-click theDone transition after theDocuSignWait state and rename the WaitForFormBookmark activ-
ity as Continue when all signatures are collected. DocuSign returns the string "Continue when all sig-
natures are collected" in the custom field named "Bookmark".

2. Specify the Condition as signer2Complete. Only when the sign2complete variable is set to true, the user can
proceed with the sequence.

3. Create a variable named SignedDocument. In the Variable type field, select DocuSignDocument. Set the
Scope to StateMachine.

4. Drop aGetSignedDocument activity into the Action area.

Specify the properties for the activity as follows:

Forms Builder Version 3.6.1 685 Help Guide

l DocuSignDocument = SignedDocument (This is the name of the variable created above.)
l EnvelopeId = DocuSignRequest.EnvelopeId

5. Save the workflow locally and continue with the next set of steps.

Note: If it is necessary to troubleshoot the receipt of the signed document, you might want to consider the pro-
cedure of Write the PDF to Disk.

Create and Save the Document in CampusNexus Student

To convert a DocuSign document to a DocumentEntity that can be attached to a record in CampusNexus Student,
add CreateDocument and SaveDocument activities to the workflow. These activities will be placed below the
GetSignedDocument activity.

1. Create a variable named Doc. Set the Scope to StateMachine.

In the Variable type field, select Browse for Type. In the "Browse and Select a .Net Type" window, scroll
down to Cmc.Nexus.Crm.Contracts > Cmc.Nexus.Crm.Entities and select DocumentEntity.

2. Drop a CreateDocument activity below the GetSignedDocument activity.

Forms Builder Version 3.6.1 686 Help Guide

Specify the required properties for the activity as follows:

l Module = Select a Module from the drop-down list, e.g., Admissions.
l Document Type = Select a Type (Template) from the drop-down list.
l Document Status = Select a Type from the drop-down list.
l Student = Specify a Student Id or use a variable.
l Due Date = Specify a date or use a variable, e.g., DateTime.Now.AddDays(2)
l Document (OutArgument) = Doc (This is the variable created above for the DocumentEntity.)
l Validation Messages = formInstance.ValidationMessages

3. Below the CreateDocument activity, drop an Assign activity for each row in the following table and type the
indicated values:

Forms Builder Version 3.6.1 687 Help Guide

"To" Field Value

Doc.OriginalFileName SignedDocument.Name + "1.pdf"

Doc.DocumentImage SignedDocument.Content

Doc.ImageType "Pdf"

Doc.IsDocumentAddedManually true

4. Drop a SaveDocument activity below the CreateDocument activity.

Specify the properties for the SaveDocument activity as follows:

l Document (InOutArgument) = Doc (This is the variable created above for the DocumentEntity.)
l Validation Messages = formInstance.ValidationMessages

5. Drop a SendMail activity below the SaveDocument activity.

Specify the properties for the SaveDocument activity as follows:

l Body = "Continue with next form at http://www..." (or similar message text as needed to direct
the student to the next steps in the process)

l From = testing@campusmgmt.com (email address of the institution)
l Subject = "Signatures received" (or similar subject text)
l To = "tester@campusmgmt.com" (email address of the student)

6. Save the workflow locally and continue with the next set of steps.

Forms Builder Version 3.6.1 688 Help Guide

Final Steps

1. Click Publish. The New Workflow Definition Version window is displayed.

2. If you want the workflow to be run as soon as the event occurs on the entity, select Enable This Workflow
Version?, otherwise leave the check box cleared.

3. Click Save, then Cancel to close the publisher window.

4. In the Sequence List, select and complete the form that contains the DocuSign fields.

5. Verify that the signed DocuSign document is available at the return URL.

Note: While testing your workflow, make sure that you terminate the previous instance of the workflow before run-
ning an updated version of the same workflow. In Workflow Composer, click Open Persisted Workflow, select
your workflow instance, and click Terminate.

In Forms Builder 3.6 and later, persisted workflow instances can be deleted from the Sequence Designer workspace.
For more information, see Delete Persisted Workflow Instances.

Forms Builder Version 3.6.1 689 Help Guide

Move from Test to Production
Perform these actions to ensure that your solution will function in the production environment.

l Repoint REST API Base Url in DocuSign Settings as described.

l If you used DocuSignConfig.TestMode=true in your DocuSign workflow, delete this assignment or change
it to false.

As of Forms Builder 3.4, the DocuSignConfig.TestMode assignment (=true or =false) is no longer supported
or functional. Assign statements containing it can be deleted.

l Ensure that the account you are using has Send Envelope permissions.

l Once the setup is complete, call DocuSign to configure following items:

o Enable the In-Session permission to your account.

o Don't Enforce In Session Certificate.

l Update theAPI Email Address and Password to the production values (see DocuSign Settings).

l If you are planning to have multiple signers per document, enableDocuSign Connect to allowWebhook.

l If you use the resource files or templates in the demo environment, transition them to your production envir-
onment.

l For templates specifically, the Template ID will change from the demo environment to your production envir-
onment. Adjust your code accordingly.

l Perform post certification testing prior to the go-live date to verify functionality. Envelopes used for pro-
duction testing will be credited to your account upon verification. Contact your account manager for details.

Forms Builder Version 3.6.1 690 Help Guide

Log into DocuSign
Users can log into DocuSign and see documents and history, permissions, API information, etc.

Manage Tab

Select the Manage tab to view the details.

Forms Builder Version 3.6.1 691 Help Guide

Permissions

On the Permissions screen, users can check if the Send Envelopes permission is configured for their account.

Forms Builder Version 3.6.1 692 Help Guide

API and Integrator Key Information

This key is assigned by DocuSign and never changes. It is used by Campus Management Corp. for troubleshooting
and can be found in the DocuSign Configuration Window in Forms Builder.

Forms Builder Version 3.6.1 693 Help Guide

Forms Builder Version 3.6.1 694 Help Guide

Troubleshooting
Since multiple applications and processes are involved in building forms, it is necessary to apply systematic
troubleshooting techniques. This section contains general guidelines and reference materials that may help you to
isolate and correct errors.

Note:

When a server-side error occurs during the processing of a rendered sequence that cannot be corrected via form
resubmission, an error message is displayed. The default message text is "Unable to process form. Please contact
your administrator for assistance."

You can edit the message text on the Settings tile in Form Designer and save your custom message. You can use
HTML markup to encode a URL or email address if desired.

By design, the error details will only be captured in the log files. You need to check the log files to troubleshoot
the error. For more information, see Log Files.

Forms Builder Version 3.6.1 695 Help Guide

Basics
The following guidelines for software troubleshooting also apply to building forms with Forms Builder and creating
workflows in Workflow Composer.

l One change at a time

If you have a bug, try a fix, render the form, and see if it's fixed. If you have two bugs, fix one, test, and then
fix the other bug. Don't try to fix all your bugs at once. Build and test incrementally to isolate the source of a
problem.

l Read the error messages

Error messages can be intimidating, but sometimes you find a nugget of helpful information.

l Read your code (or have someone else read it for you)

Often, when you read your own code, you read it as you meant to write it, not as it is actually written. It can
be hard to catch little things like off-by-one errors. If you take some time away from your code, then read it
fresh, or have someone else read, you might find your code doesn't do exactly what you thought it did.

l Correct the problems you know of before tackling unknown errors

When confronted with many errors, you might spot 1-2 that you know the cause of. It's tempting to leave
those for later and tackle the unknown errors first. But sometimes the unknown errors are byproducts of the
known errors. Or maybe the known errors make the unknown errors more complicated or confusing.

l Search for bugs using as many tools as possible, and approach from all angles

Embrace all available technologies. In the case of forms and workflows, these tools include log files, browser
developer tools, and

l Sprinkle breakpoints

Mark up the code in places of interest, see what entry points get hit, or how certain values change. In the case
of workflows, LogLine or LogObject activities can serve as breakpoints for successful workflow execution. We
recommend setting the Level value to Information for any LogLine or LogObject activities. See Best
Practices for Logging and Logging in Azure

Forms Builder Version 3.6.1 696 Help Guide

Log Files
The following information does not apply to Forms Builder 3.5.2 and later in an Azure environment. For
information about logging and debugging workflows in an Azure environment, see Logging in Azure.

The following information does not apply to Forms Builder 3.5.2 and later in an Azure environment. For
information about logging and debugging workflows in an Azure environment, see Logging in Azure.

Enhanced Logging in Forms Builder 3.4 and Later
Additional logging capability is provided in Forms Builder 3.4 and later:

l WorkflowinstanceId

The FormBuilderLogService has been enhanced so that whenever it logs the user name and work-
flowdefinitionid, it now also logs the workflowinstanceid, if available.

l Fatal exceptions

If a final exception is caught in the FormInstanceController (which essentially aborts the web service call), the
exception is now logged as Fatal, since it is not just an error. A Fatal exception essentially terminates a work-
flow and causes aborts on further attempts to access it.

l Entire DocuSign return envelope

The WebhookController used in DocuSign sequences has been enhanced to log much more info. This code is
executed when DocuSign returns a Completed status for a sequence with multiple signers. The entire return
envelope from DocuSign is now logged at the Debug level. There is also more Info available as it starts up the
previous workflow.

In Forms Builder 3.5, the NLog levels for Designer and Renderer are configured in the Settings workspace. After
changing the settings, the Designer and/or Renderer websites must be restarted.

In Forms Builder 3.5.1 and later, the ability to set NLog levels in the Settings workspace of Form Designer is
removed to prevent conflicts with Azure log configurations. Azure logs are stored in customer-specifc tables. If your
Forms Builder deployment is in an Azure environment, contact Campus Management Corp. obtain access
to the Azure log tables or to request changes in the NLog settings.

In Forms Builder 3.6., several logger.debug statements and client side logs are modified to Info level to make them
available to help debug issues in an Azure environment since in an Azure environment the log level is set to Info level
for all products. The Info level is set for logs related to:

l Site Warmup
l LookupUser
l Account Controller
l PDF creation and DocuSign
l Payment processing for Paypal, ACI, and IATS

Forms Builder Version 3.6.1 697 Help Guide

NLog Level Hierarchy Description

Fatal 1 - Only fatal messages
will be logged.

A web service call has thrown an exception. The username,
workflowdefintionid, and workflowinstanceid are logged.

Error 2 - Logs include the first
two levels.

Any exceptions that are not being handled by the applic-
ation.

Warn 3 - Logs include the first
three levels.

Messages about potential oddities from which the applic-
ation automatically recovers or about variable/property val-
ues that may be close to being out of the acceptable range.

Info 4 - Logs include the first
four levels.

Reserved for customer logging in workflows (see
LogLine/LogObject Activities).

Debug 5 - Logs include the first
five levels.

All additional Forms Builder logging.

Trace 6 - Logs include all mes-
sages.

Extensive additional Cmc.Core logging for use by
developers.

Note: When a bookmark is not found (unknown cause), Forms Builder no longer tries to unload the workflow twice and
log twice. This exception was previous only seen in the Trace logs. In Forms Builder 3.4 and later, it is moved to the
Debug level.

NLog Levels

Forms Builder Version 3.6.1 698 Help Guide

Best Practices for Logging

Important

Log files may contain confidential information such as user names and passwords, account information, etc. It
is your responsibility to protect sensitive user and system data.

To mitigate the risks of exposing sensitive data, observe the following best practices:

l Set the log level in production environments to the lowest, least detailed log level. Increase the log level
in test environments only when needed. Reset the log level when testing is complete.

The default logging provider used by CampusNexus products is NLog. NLog allows you to configure log
targets, levels, rules, layouts, etc. through configuration. To configure logging for CampusNexus
products, modify the NLog.config file in the application’s executing directory. For Web applications, this
file exists alongside the web.config file.

l When LogLine or LogObject workflow activities are used to capture entities that contain sensitive inform-
ation, remove such activities as soon as testing is complete.

We recommend setting the Level value to Information for any LogLine or LogObject activities. See
Best Practices for Logging and Logging in Azure

If, instead you followed the recommendations, and the development machine NLog minLevel is set to
“Info” and all logging is done at the “Information” level, and the production machine NLog minLevel is
set to “Error” (default), then nothing needs to be done because the production machine will not log
“Information” LogLine or LogObject activities. The additional benefit is that the logging is still available if
a problem can only be seen in a production machine, and lowering the NLog minLevel to “Info” tem-
porarily (and restarting the app pool) will allow troubleshooting.

Location of Log Files

Forms Builder Logs

l Local logs: C:\logs

l Server logs: \\<server>\c$\logs

Where <server> is the name of the server where Form Designer and/or Renderer is installed.

The log folder on the server contains numerous installation logs and error logs for CMC applications. The
most commonly used log file for troubleshooting Forms Builder issues are the Form-
sBuilderRenderer<date>.txt and Cmc.Nexus.AdaptiveLog.txt. Sort the folder by “Date modified” and

Forms Builder Version 3.6.1 699 Help Guide

open the most recent log.

Event Logs

Event logs for workflows that are executed on a CampusNexus Student server are written to the following folder on
the server machine:

Program Files (x86)\CMC\C2000\Services\Nexus Event Notification Service <version>\logs

The logs capture all workflow events including LogLine output, events associated with long running workflows, and
errors captured by the Service Module Host.

Logs for Saved Events

For Saved events, logs are found in:

Program Files (x86)\CMC\C2000\Services\CampusVue Nexus Event Notification Service<version>\logs.

Logs for Saving Events

The host process for Saving events from the Desktop for CampusNexus Student is the CampusLink WCF API (worker
process). The logs are on the API server under cmc.campuslink.webservices.Wcf\logs.

The logs for Saving events from the Web Client for CampusNexus Student are on the Web Client server in the \logs
folder in theCmc.Nexus.AdaptiveLog file.

LogLine/LogObject Activities
Add LogLine or LogObject activities at critical points within the workflow, for example, after "Get" or "Save" oper-
ations.

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

Use the following settings in LogLine activities to catch all errors and all attributes associated with an object:

l Level = Information

l Text = Newtonsoft.Json.JsonConvert.SerializeObject(<object>, New-
tonsoft.Json.Formatting.Indented)

Forms Builder Version 3.6.1 700 Help Guide

Where <object> is replaced with the name of the entity for which you want to capture details, e.g., stu-
dentEntity. The log file will contain the values for all attributes of the specified entity.

NLog Levels

1. On the test system, in the CMCFormsRenderer_V3 folder, locate the NLog.config file.

2. In the <rules> section of the NLog.config file, change theminLevel to "Info". Do not change this on your pro-
duction system.

<rules>
<logger
 name = "*"
 minLevel = "Info"
writeTo = "file" />

</rules>

Now any LogLines in your test machine that log to “Information” will be seen in the logs.

On your productionmachine where theminlevel is “Error”, these will not log, making it unnecessary to remove the
LogLines from a production ready workflow (for performance reasons), with the option of enabling them if necessary.

Common Errors and Solutions
Scroll through the log file and locate the pertinent time stamps or search the log file with keyword “error”.

Some error messages include details about the cause for the error and tips to correct the issue. Correcting one issue
may lead to the resolution of multiple related errors.

The following tables list common errors found in the Renderer and Form Designer logs and provide suggestions for
actions to take to correct the errors.

Error
Type

Example Action to take

Durable
Instancing

Cmc.Nexus.FormsBuilder.Renderer.Web.Services.FormInstanceService The work-
flow version for this sequencemay have been updated after the sequence was pub-
lished. Records in the [System.Activities.DurableInstancing].
[InstancePromotedPropertiesTable] table may be referencing a different version of the
workflow. FormInstanceWorkflowDefinitionVersionId: 2577Work-
flowDefinitionVersionId from DB: 2995

Clear persisted
workflows and
rerun the
sequence.

FormsBuilderRenderer Log

Forms Builder Version 3.6.1 701 Help Guide

Error
Type

Example Action to take

Endpoint
Not Found
Exception

Cmc.Nexus.FormsBuilder.Renderer.Web.Controllers.FormInstancesController
Unable to create new form instance: Sys-
tem.ServiceModel.EndpointNotFoundException: There was no endpoint listening at
http://cltqaf-
b7.campusmgmt.com/Cmc.Nexus.Web/Services/Common/StudentService.svc that
could accept themessage. This is often caused by an incorrect address or SOAP
action.

A form is trying
to use an entity
that does not
yet have a
CampusNexus
service run-
ning. Check if
the Cam-
pusNexus web
service exists;
if not, check if
the service is
supported.

Index Out
Of Range
Exception

Cmc.Nexus.FormsBuilder.Renderer.Web.Controllers.FormInstancesController
Unable to execute a form instance service transition: Sys-
tem.IndexOutOfRangeException: Index was outside the bounds of the array.

In this case, a
File Upload
component
was used with
a GetAt-
tachments
activity and the
Con-
trolIdentifier
argument was
not correct
(copied from
another work-
flow). When
the Con-
trolIdentifier is
incorrect, it
cannot be con-
nected to the
File Upload
control and
GetAt-
tachments will
get no data.

Forms Builder Version 3.6.1 702 Help Guide

Error
Type

Example Action to take

JSON Seri-
alization
Exception

Cmc.Nexus.FormsBuilder.Renderer.Web.Controllers.FormInstancesController
Unable to execute a form instance service transition: New-
tonsoft.Json.JsonSerializationException: Cannot deserialize the current JSON object
(e.g. {"name":"value"}) into type 'System.String[]' because the type requires a JSON
array (e.g. [1,2,3]) to deserialize correctly.
To fix this error either change the JSON to a JSON array (e.g. [1,2,3]) or change the
deserialized type so that it is a normal .NET type (e.g. not a primitive type like integer,
not a collection type like an array or List<T>) that can be deserialized from a JSON
object. JsonObjectAttribute can also be added to the type to force it to deserialize from
a JSON object.

Check the data
type usedmost
likely for the
in/out argu-
ment.

Null Refer-
ence
Exception

Cmc.Nexus.FormsBuilder.Renderer.Web.Controllers.AccountController Unable to
logout: System.NullReferenceException: Object reference not set to an instance of an
object.

Check the cas-
ing on the
in/out argu-
ments. If you
initialized Stu-
dentID and not
StudentId, the
StudentId will
be null.

Unable to
get form
from data-
base

Cmc.Nexus.FormsBuilder.Renderer.Web.Controllers.FormRecordController Unable
to get Form data from database: System.ApplicationException: FormWelcome does
not exist in the database.

Using SQL
check if the
form exists in
the database.
If someone has
manually
deleted the
form, work with
your DB admin-
istrator to
recover it, or
create a new
Welcome form.

Forms Builder Version 3.6.1 703 Help Guide

Error
Type

Example Action to take

Workflow
Definition
Version not
loadable

WorkflowDefinitionVersion Id 'xxx' is not loadable. Check if the
versions of
activities in the
workflow are
compatible
with the ver-
sions of the
products in
your envir-
onment. This
error occurs if
you try to use
newer activ-
ities in older
product envir-
onments.

Try to open the
workflow in the
environment
where it is fail-
ing. If you can-
not open the
workflow, most
likely the form
sequence will
not render prop-
erly either.

Error Type Example Action to take

Unexpected
character
encountered

Cmc.Nexus.FormsBuilder.Designer.Web.Controllers.Api.FormsController
Unable to save Form data: Newtonsoft.Json.JsonReaderException: Unex-
pected character encountered while parsing value: [. Path 'formsections[0].-
columns[0][1].ControlProperties[2].Value', line 1, position 7415.

Check the syntax in
theModel property
binding.

FormsBuilderDesigner Log

Forms Builder Version 3.6.1 704 Help Guide

Logging in Azure
In Azure environments, all logging is "Info" level logging and it is accessed through Application Insights or table stor-
age. For more information, see Azure Storage Explorer

In Forms Builder 3.5.1 and later, the ability to set NLog levels in the Settings workspace of Form Designer is
removed to prevent conflicts with Azure log configurations. Azure logs are stored in customer-specifc tables. If your
Forms Builder deployment is in an Azure environment, contact Campus Management Corp. obtain access
to the Azure log tables or to request changes in the NLog settings.

In Forms Builder 3.6., several logger.debug statements and client side logs are modified to Info level to make them
available to help debug issues in an Azure environment since in an Azure environment the log level is set to Info level
for all products. The Info level is set for logs related to:

l Site Warmup
l LookupUser
l Account Controller
l PDF creation and DocuSign
l Payment processing for Paypal, ACI, and IATS

Forms Builder Version 3.6.1 705 Help Guide

Best Practices for Logging

Important

Log files may contain confidential information such as user names and passwords, account information, etc. It
is your responsibility to protect sensitive user and system data.

To mitigate the risks of exposing sensitive data, observe the following best practices:

l Set the log level in production environments to the lowest, least detailed log level. Increase the log level
in test environments only when needed. Reset the log level when testing is complete.

The default logging provider used by CampusNexus products is NLog. NLog allows you to configure log
targets, levels, rules, layouts, etc. through configuration. To configure logging for CampusNexus
products, modify the NLog.config file in the application’s executing directory. For Web applications, this
file exists alongside the web.config file.

l When LogLine or LogObject workflow activities are used to capture entities that contain sensitive inform-
ation, remove such activities as soon as testing is complete.

We recommend setting the Level value to Information for any LogLine or LogObject activities. See
Best Practices for Logging and Logging in Azure

If, instead you followed the recommendations, and the development machine NLog minLevel is set to
“Info” and all logging is done at the “Information” level, and the production machine NLog minLevel is
set to “Error” (default), then nothing needs to be done because the production machine will not log
“Information” LogLine or LogObject activities. The additional benefit is that the logging is still available if
a problem can only be seen in a production machine, and lowering the NLog minLevel to “Info” tem-
porarily (and restarting the app pool) will allow troubleshooting.

LogLine/LogObject Activities
Add LogLine or LogObject activities at critical points within the workflow, for example, after "Get" or "Save" oper-
ations.

We recommend setting the Level value to Information for any LogLine or LogObject activities. See Best Practices
for Logging and Logging in Azure

Use the following settings in LogLine activities to catch all errors and all attributes associated with an object:

l Level = Information

l Text = Newtonsoft.Json.JsonConvert.SerializeObject(<object>, New-
tonsoft.Json.Formatting.Indented)

Forms Builder Version 3.6.1 706 Help Guide

Where <object> is replaced with the name of the entity for which you want to capture details, e.g., stu-
dentEntity. The log file will contain the values for all attributes of the specified entity.

Forms Builder Version 3.6.1 707 Help Guide

Troubleshoot Workflows

Workflow Definition Is Not Displayed
If you try to open the workflow definition for a sequence and a message similar to the following is displayed, the
Forms Builder Contracts 3.x package has not been installed in Workflow Composer.

To correct this, launch Workflow Composer directly (not from Sequence Designer), select Package Manager, and
install add the appropriate Forms Builder Contracts 3.x package for your environment (see Set Up the Database
Environment).

Workflow Error Indication on Rendered Forms
When a server-side error occurs during the processing of a rendered sequence that cannot be corrected via form
resubmission, an error message is displayed. The default message text is "Unable to process form. Please contact
your administrator for assistance."

You can edit the message text on the Settings tile in Form Designer and save your custom message. You can use
HTML markup to encode a URL or email address if desired.

By design, the error details will only be captured in the log files. You need to check the log files to troubleshoot
the error. For more information, see Log Files.

Common Workflow Errors
Always check the Error List tab in Workflow Composer to obtain more details about an error.

Always clear persisted workflows before enabling a new version of a workflow.

Forms Builder Version 3.6.1 708 Help Guide

Spelling and Syntax Errors

Common errors are spelling and syntax errors in argument and variable names, values, and expressions. Be mindful
of case sensitivity.

Important

Arguments that will be bound to values in Forms Builder are case sensitive. If they are not bound, they are not case
sensitive. Variables should not be case sensitive.

Many errors can be avoided by taking advantage of IntelliSense features. For example, type a period (.) or press
Ctrl+J to obtain the valid members from a list. Press Space to select a list member.

Mismatch Between State and Form Names

When editing a workflow definition, keep in mind that a state in the state machine workflow equates to a form
within the sequence. The name of a State must match the name of a Form to be rendered properly. If Renderer
encounters a State in workflow definition that does not match name of any Form created in Form Designer, an error
similar to the following will be generated.

Missing ".Value" Attribute

When entering attributes for entities in workflow activities on objects that can be null, users often forget to select
the ".Value" attribute. If an object might be null, HasValue in an If/Else Condition can check if there is a Value before
trying to use it, otherwise it will cause an error. To clear the error, use IntelliSense to find the dot (.) Value.

Forms Builder Version 3.6.1 709 Help Guide

Undeclared Variables and Incorrect Variable Types

Undeclared Variable

Incorrect Variable Type

Incorrect Notation for Variables

Array variables in the Property Settings pane of Form Designer use AngularJS notation with "square brackets" [].

Example:

Array variables in Workflow Composer require VB.NET notation with "rounded brackets" ().

Example:

Forms Builder Version 3.6.1 710 Help Guide

If you use "rounded brackets" () in Form Designer, rendering of the sequence will fail, and the browser Developer
Tools will show the following error:

SaveDocument Does Not Produce Expected Updates

CampusNexus Student allows administrators to specify document policies that define which users can assign, read,
edit, and close particular kinds of documents. The policies also define which document status changes are per-
mitted. The document policies are assigned to staff users.

Check your document policy settings for allowed document status changes if the workflow for a form sequence
includes a SaveDocument activity but does not produce the expected document updates.

NullReferenceException in Log Files

Your workflow will abort if it throws exceptions (and could leave stale persisted instances). One very common excep-
tion is a NullReferenceException found in the log file. This occurs when you try to reference a property and its value
on an object, but the object is null.

Example 1

myInt is defined as a Nullable<Int32> type.

Since you know you must access the value with a myInt.Value property, you log a line or use it in a workflow without
checking whether it is actually null first. If myInt is null, myInt.Value will throw that exception and abort your work-
flow!

Example 2

myEntity is an entity you are using. It has many properties. If you reference any of those properties but myEntity
has not been defined yet, again it will throw that exception. Likewise, if any of its properties are nullable and you try
to use that property, Example 1 applies.

A NullReferenceException can also occur if you attempt to assign a value to an entity type object that has not yet
had an associated GetEntity or CreateEntity activity.

Example 3

myObj is an object of some type. It has not been defined. You execute myObj.ToString or reference myOb-
j.myProperty. Either will also throw that exception.

https://help.campusmanagement.com/WF/Content/Workflow/SaveDocumentnew.htm

Forms Builder Version 3.6.1 711 Help Guide

Remedy

1. Here is a cautious way to log myInt by using the VB.Net ternary operator.

If (myInt.HasValue, “This is my value “ & myInt.Value.ToString, “My value was null, and I did not expect that”)

If you are using other complex properties and you are assigning from a nullable type to a non-nullable type,
you need to make sure it is checked.

In an assign statement

myNonNullableIntType = if (myInt.HasValue, myInt.Value, -1)

The value -1 could be any real integer that would signify that there was no actual value. Note that if this is an
entity and that happened to be a child id, an invalid value could throw other exceptions when an attempt was
made to store it in the database. In that case an “If” activity, which takes some other action (such as sending
back a validation error), is more appropriate.

2. myEntity should be checked for null before using it by using an “If” activity, unless you know it cannot be null.

if (myEntity is Nothing)

3. myObj should be checked whether it is null when logging (unless you know it can’t be), and myProperty
should also be checked if it is nullable.

if (myObj is Nothing, “myObj was null”, if (myObj.myProperty.HasValue, myObj.myProperty.Value.ToString,
“myObj.myProperty was null”))

Error Converting Null Object When Using Drop-down List Component

When the Model property in a Drop-down List component is bound to an integer value and the selection of a value
is optional, the following errors occur if the variable is not defined as Nullable<Int32> in Workflow Composer.

Workflow failed:*
Error converting value {null} to type 'System.Int32'. Path 'myLead', line 1, position
15600.

Error converting value {null} to type 'System.Int32'. Path 'myLead', line 1, position 15600.

Null object cannot be converted to a value type.

For more information, see Drop-down List component.

Validation Messages
In activities that provide a ValidationMessages field, you can specify the value
formInstance.ValidationMessages. The in/out argument formInstance is available with every form. It provides a
set of attributes including ValidationMessages.

Forms Builder Version 3.6.1 712 Help Guide

You can also specify conditions such as formInstance.ValidationMessages.HasErrors ornot formIn-
stance.ValidationMessages.HasErrors and proceed as needed depending on the result of the expression.

Print an Array of Validation Messages

If you are trying to print validation messages from an array (validationMessages(0).item), the following error may
appear in the log file:

Cmc.Nexus.FormsBuilder.Renderer.Web.Services.FormInstanceService System.NullReferenceException: Object ref-
erence not set to an instance of an object. at lambda_method(Closure , ActivityContext)

Before attempting to print an item in an array that may never have been initialized, ensure that the workflow con-
tains the If/Then condition "validationMessages.HasErrors". Another way to define the condition is “If Not ArrayVari-
able is Nothing”.

Assign Ids
Some entities in the CampusNexus object model require an Id value in order to save the entity. If the Id is not
entered on a form, the associated SaveEntity activity in the workflow will fail, unless the Id is assigned within the
workflow.

Example

A form collects relationship address data for a student who logged into Portal. The workflow contains a SaveEntity
activity for the StudentRelationshipAddressEntity. When the form sequence is rendered, the following error occurs:
The student records you are trying to access are invalid.

Forms Builder Version 3.6.1 713 Help Guide

To resolve this error, ensure the workflow assigns a StudentId and not just the new values for the new address
before the SaveEntity<StudentRelationshipAddressEntity> activity. The Value field in the Assign activity could con-
tain a variable (studentId) that is populated based on the LookupUser activity.

SQL Query to Determine the UserName for a Persisted Workflow
The Instance Id of a persisted workflow can be used to query the SQL database to determine which student each of
the workflow instances applies to.

You can run the following SQL query to determine the UserName associated with the persisted workflow. Replace
the highlighted section with the InstanceId from Workflow Composer.

SELECT ipp.Value2 as UserName
FROM [System.Activities.DurableInstancing].[InstancePromotedPropertiesTable] ipp
INNER JOIN [System.Activities.DurableInstancing].[InstancesTable] i ON ipp.SurrogateInstanceId = i.Sur-
rogateInstanceId
WHERE i.Id = 'cc11c1c5-7a2d-45c2-ba1e-55f3bd273210'

If the user is a GUID, then the sequence was anonymous.

Forms Builder Version 3.6.1 714 Help Guide

Troubleshoot Fields and Components

Validation Error on Text Boxes
Scenario: A workflow combines the FirstName and LastName fields of the StudentEntity class to display the full stu-
dent name. When the user clicks Next on the rendered sequence, a validation error occurs on the Student Name
text box.

Solution: Check for extra padding on FirstName and LastName fields from the database. The CampusNexus entity
model defines the FirstName and LastName fields as text boxes, each with a Max Length of 25. If the workflow cre-
ates a FullName variable with an assignment of FirstName + “ “ + LastName, it is best practice to add a trim to
trim the extra spaces. Otherwise, with the extra padding, the length may exceed the MaxLength of 50 for the com-
bined fields.

An alternate solution is to remove the Min Length property setting on the failing text boxes. i.e., leave it blank.

Invalid Property Names in Grids
When assigning Property Name values in the column editor, make sure that the values are different than the
Mapped ID value. Otherwise, the following error may be displayed: "An item with the same key has already been
added."

Forms Builder Version 3.6.1 715 Help Guide

Forms Builder Version 3.6.1 716 Help Guide

Troubleshoot Rendered Sequences

Workflow Error on Rendered Forms
When a server-side error occurs during the processing of a rendered sequence that cannot be corrected via form
resubmission, an error message is displayed. The default message text is "Unable to process form. Please contact
your administrator for assistance."

You can edit the message text on the Settings tile in Form Designer and save your custom message. You can use
HTML markup to encode a URL or email address if desired.

By design, the error details will only be captured in the log files. You need to check the log files to troubleshoot
the error. For more information, see Log Files.

Server Error - Workflow Aborted
If a user encounters the following error when clicking Next in a rendered sequence, the most likely cause is that the
SQL server connection is slow or down. Hence the instance could not be persisted in the DurableInstance Store at
that point. The user should refresh the sequence in the browser and retry.

When this error occurs, you will probably also see some exceptions in the Renderer log such as:

2017-12-12 18:40:00.1218 2941 Error Cmc.Nex-
us.FormsBuilder.Renderer.Web.Services.FormInstanceService Aborted: Sys-
tem.Runtime.DurableInstancing.InstanceOwnerException: The execution of an
InstancePersistenceCommand was interrupted because the instance owner registration for owner ID
'dd96f9bb-4995-4480-b80d-9e0d99ea703b' has become invalid. This error indicates that the in-memory
copy of all instances locked by this owner have become stale and should be discarded, along with
the InstanceHandles. Typically, this error is best handled by restarting the host.

Forms Builder Version 3.6.1 717 Help Guide

Remedy:

Execute an IISreset on the server.

Forms are Skipped
If a rendered sequence does not display all forms in the sequence, check for missing WaitForFormBookmark activ-
ities in the transitions before and after the skipped forms.

DocuSign Document is Blank
If a DocuSign document is blank, check the URL in the PrintUrlToPdf activity. If one URL character is wrong or spaces
are not substituted with “+”, the target PDF will be empty. To verify you have the proper URL, check it with
ViewCreator just after you have entered data on the form to be converted. Open a separate tab and ensure your
form is displayed at the following URL:

http://<server><domain>:<port>/#/viewCreator/WorkflowDefinitionId/forms=FormName

On a slow server the time before the converter starts may not be sufficient. In the Renderer web.config the default
setting for ViewCreatorDefaultStartConversionTimerInMilliseconds is 500. Try increasing it to 1000.

Disappearing Grid Rows on Edit
Solution: The Mapped Id used for the grid must be unique per row.

l For most CampusNexus Student entities, the Id field can be used.
l For CampusNexus CRM entities, theKeyId field can be used.

If using a SerializableDynamicObject not bound to a defined entity, the grid will automatically assign a unique Id to
be used.

Forms Builder Version 3.6.1 718 Help Guide

Slow Loading of Authenticated Sequences
If the first form in a CampusNexus Student sequence is slow every now and then, but subsequent loads are okay,
this could mean that the CampusNexus Student application, whose services are most likely invoked with a Get or
Create activity on the first form’s entry, may be taking some time to start up.

The default value of Idle Time-out setting for the Application Pool used by the Web Client for CampusNexus Student
is 20 minutes. If you don’t have much traffic or intermittent traffic, consider increasing this value to 12 (720
minutes) or 24 hours (1440 minutes).

1. In Internet Information Service (IIS) Manager, expand the server node, and click Application Pools.

2. Select theCampusNexusStudentAppPool and click Advanced Settings.

3. In the Process Model section, increase the Idle Time-out (minutes) value to 720 or 1440.

Forms Builder Version 3.6.1 719 Help Guide

Visually Examine Data in Renderer
Note: The following JSON display has been replaced by a setting in Forms Builder 3.4 which allows you to turn it on
for the entire site (normally only done in a development environment). However, the following technique may still
be useful to embed this code in a single form temporarily on a production site to display data for a data-dependent
situation.

You can add a visual display of the current data in a form by exposing the JSON model. There are two ways to look at
the data:

A. You can look at the JSON on a global basis for every sequence and every form with the following option in the
Settings workspace of Form Designer:

B. You can use the JSON Debug Info component to help debug forms in production mode where the JSON
information is needed for a single form and not the entire site (see JSON Debug Info).

Debug - Show Generated JSON Model
When the "Debug - Show Generated JSON Model" option is enabled in the Forms Builder Settings workspace, addi-
tional data that shows the values for objects on the form will be shown at the bottom of each rendered form. This
data can be helpful for troubleshooting, especially for complex components on a page where knowing the data that
is available to a workflow during a transition will aid in debugging a workflow.

On form load, the Generated Model for Debugging section shows the Renderer Media Variables . As the form fields
are populated with values, the debugging section displays the values associated with each object on the form, i.e., all
model entity data on the page and new values entered are displayed in real time.

Notes:

l On form transition, the entity data is serialized, and the debugging section will present all fields (not just the
fields completed for the entity in the form).

l A createEntity or getEntity activity in the workflow will also cause all data fields of an entity to be included in
the debugging section.

Forms Builder Version 3.6.1 720 Help Guide

Forms Builder Version 3.6.1 721 Help Guide

DbUpdateConcurrency Exception
A DbUpdateConcurrency error occurs when an attempt is made to update an instance of an entity via a Save activ-
ity, but that instance has been modified by another user in the time from when the instance was initially retrieved in
the workflow to the point in time when the Save activity executes.

Example of a DbUpdateConcurrency exception in a Renderer log file:

2018-02-27 13:30:16.7645 54 Error Cmc.Nexus.Crm.Workflow.SaveDocument Sys-
tem.ServiceModel.FaultException`1[System.ServiceModel.ExceptionDetail]: Store update, insert, or delete statement
affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were loaded. See
http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic concurrency
exceptions. (Fault Detail is equal to An ExceptionDetail, likely created by IncludeExceptionDetailInFaults=true, whose
value is: System.Data.Entity.Infrastructure.DbUpdateConcurrencyException: Store update, insert, or delete state-
ment affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities were
loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optimistic
concurrency exceptions. ----> System.Data.Entity.Core.OptimisticConcurrencyException: Store update, insert, or
delete statement affected an unexpected number of rows (0). Entities may have beenmodified or deleted since entities
were loaded. See http://go.microsoft.com/fwlink/?LinkId=472540 for information on understanding and handling optim-
istic concurrency exceptions. at Sys-
tem.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.ValidateRowsAffected(Int64 rowsAffected,
UpdateCommand source) at System.Data.Entity.Core.Mapping.Update.Internal.UpdateTranslator.Update() at Sys-
tem.D...).

The best practice we recommend to avoid this error is to add a TransactionScope activity to the workflow. Use the
defaults of IsolationLevel = Serializable, and a timeout of 1 minute.

Within that TransactionScope, add aGetEntity activity to retrieve the instance of the entity prior to the execution
of the SaveEntity activity. Any property values that need to be updated prior to saving can be done so via Assign
statements right after the Get activity and right before the Save activity.

A transaction locks the database to give the workflow a chance to read and update with no other process sim-
ultaneously doing the same. Read about the other less aggressive isolation levels as they may be adequate for the
purpose based on the type of updates being done and produce less overhead. Google “TransactionScope Isol-
ationLevel Activities”. A “RepeatableRead” may be sufficient.

This pattern will eliminate any chance that another user will update this record in between the execution of the Get
and Save activities within the workflow.

Access Denied Error
If the API keys are not set up correctly, an "Access denied" error will be seen in the Renderer log, for example, when a
Forms Builder workflow calls a CampusNexus Student activity.

Solution: Ensure that the API keys across all products match. For more information, see API Keys.

Forms Builder Version 3.6.1 722 Help Guide

Troubleshoot DocuSign Forms

Write the PDF to Disk
Normally, you will not be able to view PDF files generated to send to DocuSign until after they are signed and saved
in your provider’s database. The view of the PDF returned from DocuSign is not the actual PDF, but instead a ras-
terized image of the PDF document created by DocuSign. Internally, Forms Builder has this initial PDF data con-
tained within the workflow and model, and in the last step during the GetSignedDocument activity, retrieves the
signed PDF from DocuSign, so that you can save it.

However, as a troubleshooting tool, you can enable the writing of the PDF to disk at the time it is returned from the
conversion process and before being sent to DocuSign. To do so, locate the <appSettings> section in your Renderer
web.config, and if the following do not exist, add them.

<add key="SaveViewCreatorPDFToDisk" value="false" />

<add key="SaveViewCreatorPDFToDiskPath" value="" />

Setting the first one to true will cause the file to be written to disk in the C:\Logs directory. To change the path, over-
ride the location with the 2nd key. However, you must ensure the directory you choose is writable by the currently
configured IIS web service Application Pool Identity.

Error Code "TAB_OUT_OF_BOUNDS"
If you see the following error in the Renderer log for a form sequence with DocuSign components, you are likely sub-
mitting multiple Forms Builder forms as a single DocuSign envelope:

2017-05-25 11:40:17.9980 25 Error Cmc.Nexus.FormsBuilder.Services.DocuSignService DocuSign.eSign.Cli-
ent.ApiException: Error calling CreateEnvelope: {"errorCode": "TAB_OUT_OF_BOUNDS",

To work around this error from DocuSign, ensure that DocuSign controls are not split across page boundaries.

The following styles enforce the default page breaks. They can be modified as needed. Copy the styles and save
your changes in a custom style sheet. For more information, see Custom Content and Custom Styles.

/* The following is used during PDF creation for DocuSign and forces page breaks before each form except the first
form. This can be commented or modified if some other pagination scheme is desired. */

@media print {
#viewCreatorForm > div:not(:first-child) {
page-break-before: always;
}

}

Forms Builder Version 3.6.1 723 Help Guide

/* The above @media print does not address page breaks within a long form. DocuSign may reject PDF files where
DocuSign signatures cross page boundaries in the PDF files, usually with an error like "TAB_OUT_OF_BOUNDS".
Adding appropriate pages breaks is best accommodated by adding an HTML component in the form anywhere a
page break is required. Leave the HTML control empty but add the unique class name on the Class property setting:
forms_builder_page_break. This will force a page break in the PDF file before the control. */

@media print {
.forms_builder_page_break {
page-break-before: always;
}

}

On any longer forms that spread across multiple pages when converted to PDF, we recommend that you drop an
HTML component with Class forms_builder_page_break in a location on your form that will ensure the
DocuSign component does not cross a page boundary.

DocuSign Document is Blank
If a DocuSign document is blank, check the URL in the PrintUrlToPdf activity. If one URL character is wrong or spaces
are not substituted with “+”, the target PDF will be empty. To verify you have the proper URL, check it with
ViewCreator just after you have entered data on the form to be converted. Open a separate tab and ensure your
form is displayed at the following URL:

http://<server><domain>:<port>/#/viewCreator/WorkflowDefinitionId/forms=FormName

On a slow server the time before the converter starts may not be sufficient. In the Renderer web.config the default
setting for ViewCreatorDefaultStartConversionTimerInMilliseconds is 500. Try increasing it to 1000.

Forms Builder Version 3.6.1 724 Help Guide

PrintUrlToPdf Times Out
In Forms Builder 3.3 and later, the viewCreator wait is no longer timer-based, it is now event-based. Forms may need
to be re-saved, which will automatically update components to include a call to the event-based method "cmc-on-ini-
tialized".

If the PrintUrlToPdf activity times out, especially when many documents are merged into a single PDF file, simply re-
save all forms in the sequence.

Hyperlinks Display with Target URL in Parentheses
If a PDF displays the target URL of a link in parentheses after the link text:

Click here (http://google.com)

Add the following to a custom style sheet in the /Content/Custom/ folder on the Renderer website:

@media print {
a[href]:after {
content: none !important;
}

}

The result is a proper link like this: Click here

http://google.com/

Forms Builder Version 3.6.1 725 Help Guide

HTTP Status Codes
While working in Forms Builder (or any web application), you may encounter error messages that display HTTP
status codes. HTTP status codes are divided into two groups: client errors with 4xx status codes and server errors
with 5xx status codes.

4xx Client Errors
This group of HTTP status codes indicates that the request for a webpage or other resource contains bad syntax or
cannot be filled for some other reason, presumable by fault of the client.

Common client error HTTP status codes are 400 (Bad Request), 401 (Unauthorized), 404 (Not Found), and 408
(Request Timeout).

Example

A 404 error indicates that the server itself was found, but that the server was not able to retrieve the requested
page. Check the log file for additional information about the cause for this error.

5xx Server Errors
This group of HTTP status codes indicates that the request for a webpage or other resource is understood by the
server, but the server is incapable of filling it for some reason.

Common server error HTTP status codes are 500 (Internal Server Error), 502 (Bad Gateway), and 503 (Service
Unavailable). Always check the log to determine if additional information about the 5xx error is avail-
able.

Example

Forms Builder Version 3.6.1 726 Help Guide

If the error is temporary, reloading the webpage and clearing the cache (Ctrl+F5) may solve the issue. Otherwise, con-
tact your network administrator.

You may see a series of 404 and 500 errors during installation or upgrade procedures.

Installation Errors Related to CRM Contracts.dll
When Forms Builder is used with CampusNexus CRM, theCmc.NexusCrm.Contracts.dll from the \bin folder of
the Web Client for CampusNexus CRM needs to be copied to the installation folder of Workflow Composer and to
the \bin folder of Forms Renderer. If the dll file is also copied to the \bin folder of Form Designer, a series of server
errors will be displayed, and Forms Builder will not function.

Do not copy the Cmc.NexusCrm.Contracts.dll to the \bin folder of Forms Builder

Designer.

Forms Builder Version 3.6.1 727 Help Guide

For more information, see Set Up the Database Environment and CampusNexus CRM Integrations.

Test Web Services for Designer and Renderer
In Forms Builder 3.4 and later the connectivity of Designer and Renderer can easily be tested using a web service
method that was added to each web service. All you need is any browser and type the following URLs. Neither URL
is case sensitive. Depending on the configuration of the site http or https can be used.

Forms Builder Version 3.6.1 728 Help Guide

http://<designersite>:<port>/api/testwebservice

http://<renderersite>:<port>/api/testwebservice

The browser will return text indicating the GET test succeeded and the time of day. The test is not dependent on
form or sequence designs, workflows, or CRM/Student database contents.

If this test fails, you know you have some work to do on the installation of the product and the web service. For
example, you may find 502 errors in the log indicating issues with the setup and functioning of IIS and the network.

1-The remote server returned an unexpected response: (502) Bad Gateway.
2-The remote server returned an error: (502) Bad Gateway.

Forms Builder Version 3.6.1 729 Help Guide

Developer Tools
To access the browser developer tool, right-click somewhere on the page and select Inspect Element in the con-
text-menu or press F12. When opened, the default is to embed the development tool in the browser. It can be sep-
arated from the browser and viewed in its own window.

For additional information on how to open developer tool in different browsers, see http://web-
masters.stackexchange.com/questions/8525/how-to-open-the-javascript-console-in-different-browsers

For details about the Microsoft Edge F12 Dev Tools, see https://developer.microsoft.com/en-us/microsoft-edge/-
platform/documentation/f12-devtools-guide/

Console
Web browsers provide a JavaScript console as part of their developer tools. This console is useful for the following
reasons:

l Errors and warnings that occur on a webpage are logged into the console

l JavaScript commands for interacting with a webpage can be executed in the console

For more information, see http://blog.teamtreehouse.com/mastering-developer-tools-console

Using the Console to Find Syntax and Other Code Errors

In most coding projects, errors usually consist of syntax, logical, or data input errors. The console view shows
JavaScript errors and exceptions, as well as Document Object Model (DOM) exceptions. From inside your code, you
can use the console object to send status and program error messages to the console. For example, you can add a
line like

JavaScript
window.console.log("The file opened successfully");

to your JavaScript code to get the status in a script without breaking the execution. For more information about
using the console, see Using the F12 Tools Console to View Errors and Status.

F12 Developer Tools Console error messages

See https://msdn.microsoft.com/en-us/library/hh180764(v=vs.85).aspx

DOM Explorer (IE) / Elements (Chrome)
This tool shows the structure of your webpage as it is being rendered in the browser and makes it possible to edit
your HTML and styles (CSS) in a live page. You can do this without having to edit and reload your sources, so you can
quickly solve display issues.

l Determine why an element is not displaying at the right place or right size.

l Figure out which CSS styles and media queries are being applied to an element.

https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/f12-devtools-guide/
https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/f12-devtools-guide/
http://blog.teamtreehouse.com/mastering-developer-tools-console
https://msdn.microsoft.com/en-us/library/gg589530(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh180764(v=vs.85).aspx

Forms Builder Version 3.6.1 730 Help Guide

l Test a series of different colors for an element to see which looks best.

Fiddler
Fiddler is a free packet analyzer that captures HTTP and HTTPS traffic data between browsers and servers. It can be
used for network troubleshooting, session analysis, and debugging. The tool visualizes request or response mes-
sages and data exchanged between client and server.

For more information, see http://www.telerik.com/fiddler

http://www.telerik.com/fiddler

Forms Builder Version 3.6.1 731 Help Guide

Forms Builder & Workflow Troubleshooting Tips & Tricks

Forms Builder Version 3.6.1 732 Help Guide

Resources

MyCampusInsight
www.mycampusinsight.com

GitHub
https://github.com/campusmanagement

http://www.mycampusinsight.com/
https://github.com/campusmanagement

Forms Builder Version 3.6.1 733 Help Guide

Knowledge Base

Service Desk Knowledge Base provides many knowledge base articles based on client issues reported and resolution.

https://support.campusmgmt.com/

https://support.campusmgmt.com/

Forms Builder Version 3.6.1 734 Help Guide

Forms Builder Version 3.6.1 735 Help Guide

Angular JS
https://docs.angularjs.org/guide/introduction

AngularJS is a structural framework for dynamic web apps. It lets you use HTML as your template language and lets
you extend HTML's syntax to express your application's components clearly and succinctly. AngularJS's data binding
and dependency injection eliminate much of the code you would otherwise have to write. In addition, it all happens
within the browser, making it an ideal partner with any server technology.

AngularJS is what HTML would have been, had it been designed for applications. HTML is a great declarative language
for static documents. It does not contain much in the way of creating applications, and as a result building web applic-
ations is an exercise in what do I have to do to trick the browser into doing what I want?

The impedance mismatch between dynamic applications and static documents is often solved with:

l a library - a collection of functions, which are useful when writing web apps. Your code is in charge and it calls
into the library when it sees fit. E.g., jQuery.

l frameworks - a particular implementation of a web application, where your code fills in the details. The frame-
work is in charge and it calls into your code when it needs something app specific. E.g., durandal, ember, etc.

AngularJS takes another approach. It attempts to minimize the impedance mismatch between document centric
HTML and what an application needs by creating new HTML constructs. AngularJS teaches the browser new syntax
through a construct we call directives. Examples include:

l Data binding, as in {{}}.

l DOM control structures for repeating, showing and hiding DOM fragments.

l Support for forms and form validation.

l Attaching new behavior to DOM elements, such as DOM event handling.

l Grouping of HTML into reusable components.

Angular JS Resources
https://www.w3schools.com/js/js_comparisons.asp

https://teropa.info/images/angular_expressions_cheatsheet.pdf

https://docs.angularjs.org/guide/expression

https://docs.angularjs.org/guide/introduction
https://www.w3schools.com/js/js_comparisons.asp
https://teropa.info/images/angular_expressions_cheatsheet.pdf
https://docs.angularjs.org/guide/expression

Forms Builder Version 3.6.1 736 Help Guide

Validation Regex Property in Forms Builder
Validation Regex is the regular expression pattern to validate the input. Use a site like http://RegExLib.com to search
and test Regex patterns, or construct your own with Regex tools like Expresso. If the user input does not produce a
Regex match, the "Validation message" will be displayed.

Examples

Regex that enforces a minimum of 11 digits for a phone number where the first digit must be "1":

1\d{10}

Regex that enforces a phone number in the format (###)###-####:

^\([0-9]{3}\)[0-9]{3}\-[0-9]{4}$

Regex that matches a hyphen-separated social security number:

^\d{3}-\d{2}-\d{4}$

http://regexlib.com/
https://www.codeproject.com/Articles/3669/Expresso-A-Tool-for-Building-and-Testing-Regular-E
https://www.codeproject.com/Articles/3669/Expresso-A-Tool-for-Building-and-Testing-Regular-E

Forms Builder Version 3.6.1 737 Help Guide

Understanding OData
http://www.odata.org/getting-started/understand-odata-in-6-steps/

OData (Open Data Protocol) is a standard that defines the best practice for building and consuming RESTful APIs.
OData helps you focus on your business logic while building RESTful APIs without having to worry about the
approaches to define request and response headers, status codes, HTTP methods, URL conventions, media types,
payload formats and query options etc. OData also guides you about tracking changes, defining functions/actions
for reusable procedures and sending asynchronous/batch requests etc. Additionally, OData provides facility for
extension to fulfil any custom needs of your RESTful APIs.

OData RESTful APIs are easy to consume. The OData metadata, a machine-readable description of the data model of
the APIs, enables the creation of powerful generic client proxies and tools. Some of them can help you interact with
OData even without knowing anything about the protocol.

To learn more about the OData query syntax, see http://www.OData.org/ and look for "Basic Tutorial” and "Advanced
Tutorial”.

Data Model

The CampusNexus data model is based on the Command Query Responsibility Segregation (CQRS) pattern. As such,
it provides a Query Model and a Command Model.

http://www.odata.org/getting-started/understand-odata-in-6-steps/
http://www.odata.org/

Forms Builder Version 3.6.1 738 Help Guide

The classes in the following namespaces (assemblies) represent the Command Model interfaces:

l Cmc.Nexus.Academics
l Cmc.Nexus.Admissions
l Cmc.Nexus.CareerServices
l Cmc.Nexus.Common
l Cmc.Nexus.FinancialAid
l Cmc.Nexus.StudentAccounts
l Cmc.Nexus.StudentServices

CommandModel

The Command Model is optimized to handle transactions and calculations. Most of the business and decision logic
resides in the assemblies listed above.

The Command Model is exposed to the web client through WebAPI Controllers. Unlike the query model, the Com-
mand Model's relationships only include the data that will be updated in a single transaction. An example of a trans-
action sequence is the CreateTask command shown below.

Forms Builder Version 3.6.1 739 Help Guide

QueryModel

The Query Model shows the relationships between the CampusNexus Student data. The classes in the Cmc.Nex-
us.Models namespace (assembly) represent the Query Model interfaces. The entity properties of these classes are
exposed to the client through OData Controllers. This enables users to navigate through all the relationships in the
CampusNexus data model using OData queries as shown in the sequence diagram below.

ODataQueries

Forms Builder supports list controls such as Drop-down, Multiselect, and Typeahead. Each list control has a Lookup
Query property that is used to retrieve specific values from the database. Lookup Queries are specified as OData
queries.

The CampusNexus data model provides a query model and a command model. For the purposes of constructing
OData queries, refer to the query model. The query model is available at the following URL:

<Base URL>/ds/metadata/ModelMetadata/GetFullModel

Where <Base URL> is the Student Base URL displayed in the About Forms Builder window:

Forms Builder Version 3.6.1 740 Help Guide

In this example, the query model is available at:

http://student.nexus-02/ds/metadata/ModelMetadata/GetFullModel

Query the data model (http://student.nexus-02/ds/metadata/ModelMetadata/GetFullModel). Search the metadata
for the entity you are working, e.g., EntityType Name="Student". The metadata for the "Student" entity provides sev-
eral prebuilt OData queries.

Note: All pre-built queries contain "select" options for the Code, Name, and Id columns and are ordered by Name.

Forms Builder Version 3.6.1 741 Help Guide

Access the Student Base URL in a browser. In our example, the Student Base URL is as follows with /ds/cam-
pusnexus/$metadata appended to the end of the URL to view the metadata values:

http://student.nexus-02/ds/campusnexus/$metadata

Rest APIs - Swagger

You can access the Swagger UI for the REST APIs for the Web Client of CampusNexus Student version 19.0 and later
using the following steps:

1. Launch the Web Client for CampusNexus Student.

2. Log in using administrator-level credentials. If you do not have administrator credentials, see theNote below.

3. Right-click the tab within your browser, and select Duplicate Tab.

4. Replace #/home at the end of the URL with swagger/ui and hit Enter. The Swagger UI will load.

Forms Builder Version 3.6.1 742 Help Guide

5. Select a specification from the drop-down list in the header bar and expand the list of entities and meth-
ods.

If you are unsure where the entity you wish to work with resides, refer to Cmc.Nexus.Models in Workflow
Help.

6. Use the Try it out option in the Swagger UI to test sample values, commands, or models.

7. Use Command Model specifications to leverage the logic behind the REST APIs. Use Query Model spe-
cifications to query the OData Model.

Note: If you have not logged in using an administrator account or someone provisioned your account to use the
APIs, use the following steps to authorize a user to leverage the REST API logic.

1. On the Server that is hosting the CMCStudentWebClient, open theweb.config file and search for the key-
y="apiKey".

2. Double-click or highlight the content of the apiKey value (e.g., "c9tZIh-
nBgJugdL8H8YVlRJzFkXGSrY6Lk2HCYs4JVcbIjdbUC3SIpNxOJPkZo8qG") to copy it.

3. On the REST API page, click Authorize, paste your value into the Value: field, and click theAuthorize but-

https://help.campusmanagement.com/WF/Content/Workflow/MapModelsReferenceItem.htm

Forms Builder Version 3.6.1 743 Help Guide

ton.

Forms Builder Version 3.6.1 744 Help Guide

Log File Locations & Names

Forms Builder

Log files for Forms Builder are located on the server that Forms Builder Renderer/Designer is installed.

\\server\c$\logs

(where server is the hostname for your environment)

Look for FormsBuilderRenderer-date.txt and FormsBuilderDesigner-date.txt.

Workflow Saved Events

Log files for Workflow Saved Events are located on the server where the CampusNexus Event Notification Service
(CampusNexus Service Module Host) is installed, which is normally the API server.

\\server\c$\Program Files (x86)\CMC\C2000\Services\CampusVue Nexus Event Notification
Service - 19.0.1 (Version)\logs

(where server is the hostname for your environment)

Workflow Saving Events

Log files for Workflow Saving Events are located on the server where the Campuslink web services are installed.

Forms Builder Version 3.6.1 745 Help Guide

\\server\c$\inetpub\wwwroot\CampusLink for C2000Help on Nexus-01 (Database and Server
Name of the environment)\cmc.campuslink.webservices.Wcf\logs

(where server is the hostname for your environment)

Web Client

Log files for Web Client which includes services and activity logs are located on the Web server.

\\server\c$\Logs\CMC.Nexus.AdaptiveLog.txt

(where server is the hostname for your environment)

Forms Builder Version 3.6.1 746 Help Guide

Workflow Composer

Log files for Workflow Composer are located on the server where Workflow is installed.

\\server\c$\logs

(where server is the hostname for your environment)

Look forWorkflow-date.txt

Azure Storage Explorer

Currently for Azure Customers, Internal staff members access logs using Azure Storage Explorer. If staff member has
access to Last Pass then the storage account name and key can be retrieved and a storage account added to Azure
Storage Explorer. If the staff member does not have access to Last Pass, then the necessary information has to be
provided by Client Services.

1. Download and install Microsoft Azure Storage Explorer free version from the below link:

https://azure.microsoft.com/en-us/features/storage-explorer/

2. Open Microsoft Azure Storage Explorer and select the Plug icon.

https://azure.microsoft.com/en-us/features/storage-explorer/

Forms Builder Version 3.6.1 747 Help Guide

3. Select Use a storage account name and key and click Next.

Forms Builder Version 3.6.1 748 Help Guide

4. Enter theDisplay Name, Account Name, and Account Key.

The Account Key information is located in LastPass.

Search for CustomerID and custlog all one word (e.g., 100999custlogs). In the notes field you will find the
Account Key. Select Next.

Forms Builder Version 3.6.1 749 Help Guide

5. On the next screen, select Connect.

Forms Builder Version 3.6.1 750 Help Guide

6. After connecting, the Storage Account 100999custlog and default set of Tables are visible.

Forms Builder Version 3.6.1 751 Help Guide

Tips

Best Practices for Logging

Log files may contain confidential information such as user names and passwords, account information, etc. It is
your responsibility to protect sensitive user and system data.

To mitigate the risks of exposing sensitive data, observe the following best practices:

l Set the log level in production environments to the lowest, least detailed log level. Increase the log level in test
environments only when needed. Reset the log level when testing is complete.

l The default logging provider used by CampusNexus products is NLog. NLog allows you to configure log tar-
gets, levels, rules, layouts, etc. through configuration. To configure logging for CampusNexus products, modify
the NLog.config file in the application’s executing directory. For Web applications, this file exists alongside the
web.config file.

l When LogLine workflow activities are used to capture entities that contain sensitive information, remove such
LogLine activities as soon as testing is complete.

l If, instead you followed the recommendations, and the development machine NLog minLevel is set to “Info”
and all logging is done at the “Information” level, and the production machine NLog minLevel is set to “Error”
(default), then nothing needs to be done because the production machine will not log “Information” LogLine

Forms Builder Version 3.6.1 752 Help Guide

or LogObject activities. The additional benefit is that the logging is still available if a problem can only be seen
in a production machine and lowering the NLog minLevel to “Info” temporarily (and restarting the app pool)
will allow troubleshooting.

NLog
Level

Hierarchy Description

Fatal 1 - Only fatal mes-
sages will be
logged.

A web service call has thrown an exception. The username, workflowdefintionid, and
workflowinstanceid are logged.

Error 2 - Logs include
the first two
levels.

Any exceptions that are not being handled by the application.

Warn 3 - Logs include
the first three
levels.

Messages about potential oddities from which the application automatically recovers or
about variable/property values that may be close to being out of the acceptable range.

Info 4 - Logs include
the first four
levels.

Reserved for customer logging in workflows (see LogLine Activities).

Debug 5 - Logs include
the first five
levels.

All additional Forms Builder logging.

Trace 6 - Logs include all
messages.

Extensive additional Cmc.Core logging for use by developers.

LogObject

Use the LogObject activity in Workflow to log everything being created on an entity.

https://help.campusmanagement.com/FB/3.x/Content/Troubleshooting/LogFiles.htm#Insertin
https://help.campusmanagement.com/FB/3.x/Content/Troubleshooting/LogFiles.htm#Insertin

Forms Builder Version 3.6.1 753 Help Guide

LogLine

Use the LogLine activity in Workflow to log data being retrieved and/or sent, log what step the worklow is on, etc.

CampusLinkweb.config File

Edited the web.config for the Cmc.CampusLink.WebServices.Wcf site to include the error text when there is a fault:

Change the includeExceptionDetailInFaults to 'true':

<behavior>
<serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
<serviceDebug includeExceptionDetailInFaults="true" />

This will log additional information if using activities that call the CampusLink webservices.

For example: Term invalid.

Forms Builder Version 3.6.1 754 Help Guide

Reading Log Files

If viewing the log files in Notepad++, change the language to Smalltalk and it highlights and displays the information
where it is easier to read.

Forms Builder Version 3.6.1 755 Help Guide

Forms Builder Version 3.6.1 756 Help Guide

Service Module Host
The CampusNexus Service Module Host is the windows service that listens to and processes the messages in the Ser-
vice Broker Queue. If a workflow has been published, it will execute when the event is raised and processed by the
CampusNexus Service Module Host.

Nexus triggers have been added to the main tables that events can be raised against. When anything occurs in the
user interface that updates these tables then an entry is written to the Service Broker Queue and the CampusNexus
Service Module Host sweeps the queue to determine if a published workflow applies to the record. If so, the busi-
ness logic within the Workflow executes and processes the record. If not, the record is cleared from the queue.

Typically the service is installed either on the API or COM server. Once installed it must be running even if no work-
flows have been created or published because the Nexus triggers are always inserting records into the Service Broker
Queue and those records need to be processed.

CampusNexus Service Module Host:

Nexus Triggers:

Service Broker Queue:

Forms Builder Version 3.6.1 757 Help Guide

The Service Broker Queue must be Enabled. To check to see if it is enabled perform the following steps:

1. In SQL, right-click on the database and go to Properties.

2. Select Options and scroll down in the window to Service Broker. The Broker Enabled property should read
True.

Forms Builder Version 3.6.1 758 Help Guide

3. You can also use the query below to see if the Service Broker is enabled. If the Broker Enabled property is
False. You can run the below scripts to enable the broker.

--Check to see if Service Broker is Enabled
SELECT is_broker_enabled
FROM sys.databases
WHERE database_id = DB_ID()

--Enable Service Broker
alter database c2000Help set single_user with rollback immediate
ALTER DATABASE c2000Help SET ENABLE_BROKER WITH ROLLBACK IMMEDIATE
ALTER DATABASE c2000Help SET MULTI_USER WITH ROLLBACK IMMEDIATE

4. You can query the Service Broker External Notification queue as shown below in order to verify that the
queue is empty.

Forms Builder Version 3.6.1 759 Help Guide

Note: The queue should always be empty or close to empty as the CampusNexus Service Module Host should
always be running and will clear out the queue immediately. If the queue has many rows then check to make sure
the Service is running.

Never bring a customer live on a workflow until the queue is empty. If a workflow is published and the queue is pop-
ulated, once the Service is started it will try to process each row against a published workflow. This could cause stu-
dent records to have actions triggered that should not be. Start the service and let the queue empty and then publish
theWorkflow.

When is Service Module Host Used?

When creating a new Workflow in Workflow Composer, in the list of Entities a user can view the available Contracts
and select the applicable Entity/Service along with the corresponding triggering Even. The list is populated once the
Packages are imported into the Composer. When importing the packages into the composer, there will be V1 Con-
tracts and Activities and V2 Contracts and Activities.

V1Contracts

The V1 Contracts are referred to as the "old namespacing" before the Nexus re-architecture occurred. These Con-
tracts are listed under Cmc.Nexus.Contracts. All workflows created using the V1 Contracts and Event of type Saved
will always use the Service Module Host. The triggers for V1 saved events are at the database level so such workflows
will be executed whether ‘Save’ is performed on Web Client, CampusNexus Student (Desktop Client), or CampusLink.

Forms Builder Version 3.6.1 760 Help Guide

V2Contracts

The V2 Contracts are referred to as the "new namespacing" which was introduced with the Nexus re-architecture.
These Contracts are listed by module or area in the Entities list. All workflows created using the V2 Contracts and
Event of type Saved will call the services directly and will not use the Service Module Host.

Note: If in a V2 Contract Workflow, there is a V1 or V2 activity that is saving a Course for example and there is also a
V1 Student Course Saved Event Workflow published in the environment, then the V2 Contract will execute and the
V1 Student Course Saved Event Workflow will execute under the Service Module Host.

Forms Builder Version 3.6.1 761 Help Guide

FormsBuilder

Forms Builder works as a workflow engine and calls the services directly from within Forms Builder. The Service Mod-
ule Host is not relied upon for any activity used in the Forms Builder Workflow.

Note: If in a Forms Builder Workflow, there is a V2 activity that is saving a Course for example and there is also a V1
Student Course Saved Event Workflow published in the environment, then the Forms Builder Workflow will execute
and the V1 Student Course Saved Event Workflow will execute under the Service Module Host.

TaskScheduler OccurrenceEvent

A Scheduled Workflow relies upon the scheduled job and does not require the Service Module Host.

Forms Builder Version 3.6.1 762 Help Guide

Forms Builder Version 3.6.1 763 Help Guide

API Errors

API Password

If the below error is received in Workflow Composer and/or in the logs, the API Password that is in the syregistry
table is not correct. To sync the password, login to the Admin Portal and update the password for the API user.

Syregistry query:

Workflow and Log Error:

Cmc.Core.Eventing.EventHandlerException: An exception was thrown within an event hand-
ler. ----> System.NullReferenceException: Object reference not set to an instance of
an object.
at Cmc.Nexus.Common.Services.StaffService.GetApiUserId()

Forms Builder Version 3.6.1 764 Help Guide

at Cmc.Nexus.Common.Services.StaffService.GetSessionUserId()
at Cmc.Nexus.Common.Services.StaffService.GetCurrentUser()
at Cmc.Nexus.Common.EventHandlers.CommonEventHandlers.SetAuditableFields(Object
entity, Boolean isNewEntity)

Admin Portal:

Forms Builder Version 3.6.1 765 Help Guide

API User Permissions

The API User specified in the SyRegistry table has to have permissions to execute the CampusLink APIs. This user
must exist in CampusNexus Student and be part of a group other than the Administrator group that has full per-
missions to the Daily menu. This user also needs to be assigned the proper Activity Security and Document Security
policies.

Possible Error Received in Log File if Permissions are not Correct:

CampusNexus Student Configuration:

Forms Builder Version 3.6.1 766 Help Guide

Forms Builder Version 3.6.1 767 Help Guide

API Key – Access Denied Error

If the API keys are not set up correctly, an "Access denied" error will be seen in the Renderer log, for example, when a
Forms Builder workflow calls a CampusNexus Student activity.

Solution: Ensure that the API keys across all products match.

<appSettings>
<add key="ConfigureCampusNexusWcfProxy" value="true" />
<add key="ConfigureCVueNexusWcfProxy" value="true" />
<!-- Following will be populated when Crm is enabled for Forms Builder -->
<add key="CmcNexusCrmWebUrl" value="http://<server:port>/" />
<add key="PaymentProvider" value="pilot-payflowpro.paypal.com" />
<add key="AuxiliaryServiceBaseUrl" value="" />
<!-- Following should be set to true only in Azure environments where the Aux-

iliary service is installed and required. -->
<add key="UseRemotePDFConverterService" value="false" />
<!-- Following sets a time before conversion to PDF starts. Default 500, increase

if blank documents on a slow server. -->
<add key="ViewCreatorDefaultStartConversionTimerInMilliseconds" value="" />

Forms Builder Version 3.6.1 768 Help Guide

<add key="ApiKey" value="<Your API key value>" />
</appSettings>

Forms Builder Version 3.6.1 769 Help Guide

Forms Builder Access Errors

Web Client URL

If there is trouble running an authenticated form, check the Web Client URL in SyRegistry. The URL in the SyRegistry
table must match exactly the URL that is stored in the web.config file for Forms Builder Renderer and Designer. This
may also cause issues in Workflow Composer if the URL does not match.

Syregistry query:

Forms Builder Renderer Config file:

Forms Builder Designer Config file:

ExampleWorkflow Composer Error:

Forms Builder Version 3.6.1 770 Help Guide

CMCDataServices URL

If getting an error when launching a Forms Builder authenticated form and being redirected to Portal STS or trying to
launch portal, the URL in syregistry for syWebServices needs to be updated to point to the CMCDataSerivces.asmx
URL. Below is the query and the errors that may be seen for Forms Builder and Portal.

Syregistry query:

Forms Builder Version 3.6.1 771 Help Guide

Portal Error:

Forms Builder Error:

Activity Errors

If receiving errors when dragging activities into Workflow Composer, check the following:

l API Key Accuracy across all products. If customer is on prior version of products that do not have API Key but
new version of Workflow that does have API Key, comment the API Key out in Workflow Composer config file.

l Base URL for Web Client in SyRegistry is correct.

l Make sure the API Password is correct.

l Make sure the API User has correct Activity and Document Policy and correct permissions in CampusNexus
Student.

Example

Error when dragging V2 activity CreateTask in Designer of Workflow Composer:

Forms Builder Version 3.6.1 772 Help Guide

Comment out API Key in WF Composer Config File. If Workflow Composer is on a version that has the API Key in the
Workflow Composer Config File but Student is on a version below 19.0, then this error occurs:

Forms Builder Version 3.6.1 773 Help Guide

Example

Error when dragging V2 activity such as CreateTask in Designer of WF Composer and there are no values in the drop-
down for the Task Template ensure the API user has the proper Activity policy assigned in CampusNexus Student:

Forms Builder Version 3.6.1 774 Help Guide

Forms Builder Version 3.6.1 775 Help Guide

Configuration Issues

Packages

If you try to open the workflow definition for a sequence and a message similar to the following is displayed, the
Forms Builder Contracts packages have not been installed in Workflow Composer. All current packages need to be
imported into the Workflow Composer for Student, CRM, and Forms Builder based on the version that the customer
is on.

Import Packages:

Forms Builder Version 3.6.1 776 Help Guide

Note: Make sure the correct versions of the packages are installed. Install V1 and V2 Activities and Contracts for Cam-
pusNexus Student.

Connection Strings

If querying other products from within Workflow, make sure the Connection String Information exists and/or is cor-
rect in the following config files:

l Renderer web.config file
l CampusNexus Service Module Host config file
l Workflow Composer config file

Forms Builder Version 3.6.1 777 Help Guide

Email Configuration

If using the Email Activity within a Workflow, the Email Configuration in the config files needs to be accurate or an
error of "Unable to send email" will be received in the log file.

Note: This setting is in Workflow Composer config file, Renderer config file, and CampusNexus Service Module Host
config file.

Forms Builder Version 3.6.1 778 Help Guide

JSON Debug
When the "Debug - Show Generated JSON Model" option is enabled in the Forms Builder Settings workspace, addi-
tional data that shows the values for objects on the form will be shown at the bottom of each rendered form. This
data can be helpful for troubleshooting, especially for complex components on a page where knowing the data that
is available to a workflow during a transition will aid in debugging a workflow.

On form load, the Generated Model for Debugging section shows the Renderer Media Variables. As the form fields
are populated with values, the debugging section displays the values associated with each object on the form, i.e., all
model entity data on the page and new values entered are displayed in real time.

Notes:

l On form transition, the entity data is serialized, and the debugging section will present all fields (not just the
fields completed for the entity in the form).

l A createEntity or getEntity activity in the workflow will also cause all data fields of an entity to be included in
the debugging section.

Forms Builder Version 3.6.1 779 Help Guide

Forms Builder Version 3.6.1 780 Help Guide

Workflow Execution

Task Scheduler Occurrence Event

Prior to CampusNexusStudent 20.0

If a workflow is based on Task Scheduler Occurrence Event:

Your triggering decision in WF would have entity.Name = “NDS” for example. (Entity Name is whatever name you
want to give and is a string and has to match the key in the scheduled SQL job exactly.)

Workflow:

SQL Job:

Create/Schedule the Job in SQL:

The name of the Job can be anything. I always try to call it whatever I am doing so I can find it accordingly in the list.

Forms Builder Version 3.6.1 781 Help Guide

The Job Key matches the entity.Name in your Workflow.

Forms Builder Version 3.6.1 782 Help Guide

Note: Complete Schedule/Alerts/Notifications steps based on your preference.

CampusNexusStudent 20.0 and Forward

1. Sign into the CNS Student Web App with an Administrator User Id. Specifically, a user with NSA permissions to
theAdmin.BackgroundProcesses.View and Admin.BackgroundProcesses.Save operations.

Forms Builder Version 3.6.1 783 Help Guide

2. Go to: Processes → [System Administraton] → Background Processes.

3. Select New.

4. Enter the job parameters similar to what is shown below in the screenshot.

Note the cron schedule – you can select from one of the pre-defined “Job Schedule” entries in the drop
down, or enter your own, custom cron string – cron string reference.

The schedule below will execute the job every day at midnight.

https://code.google.com/archive/p/ncrontab/wikis/CrontabExamples.wiki

Forms Builder Version 3.6.1 784 Help Guide

5. You can test the job by selecting Run Now after the Scheduled Job has been saved, and it is selected in the
grid:

6. View the results by expanding the row:

Forms Builder Version 3.6.1 785 Help Guide

Workflow Validation of Business Process in Web Client

The changes from previous versions (prior to 20.0) is that we never allowed a workflow to cancel further business pro-
cess execution – or to specify at which phase of the process the workflow will execute.

To test it out: Here’s a simple example – School’s Business Rule: Limit student account transactions to 10,000 or less –
(don’t allow to post if amount is greater than 10,000)

l Add workflow: Validate Student Account Charge Transaction Amount
l Service: Student Account Transaction Service
l Event: PostAccountTransactionChargeEvent

Add a condition – check if the requested TransactionAmount exceeds 10,000:

If true, cancel execution by using the Assign activity, set:
args.CancelPipelineExecution = true

Then, add whatever validation text you want to return, e.g., “Amount cannot be greater than 10,000”

Forms Builder Version 3.6.1 786 Help Guide

Update the WorkflowDefinition so that it runs during the Validation phase (need to do this with a SQL Query for now,
but with 21.0, it will be in Workflow Composer):

update dbo.WorkflowDefinition
set eventphase = 0
where name = 'Validate Student Account Charge Transaction Amount'

EventPhase 0 = Validation (before any posting occurs)

EventPhase 1 = Execution (during the posting to the database)

EventPhase 2 = Completion (after all has been committed)

Note: In a (near) future version of Workflow Composer, setting of the EventPhase will be available in the UI. It will
appear similar to the following, when publishing a workflow:

Forms Builder Version 3.6.1 787 Help Guide

Also, note – although the framework will allow it in other phases; you should only set CancelPipelineExecution during
Validation phase workflows. Cancelling later in the process will return unexpected results as you would have no idea
what had been posted up until that point.

Test it out: Run the App and try to post a charge > 10,000

Forms Builder Version 3.6.1 788 Help Guide

Verify that it was not saved:

select top 5 SaTransId, SyStudentId, SaBillCode, Amount, PostDate
from satrans
where systudentid = 26777
order by satransid desc

SaTransId SyStudentId SaBillCode Amount PostDate

32057 26777 BOOK 55.00 2018-08-13 11:39:47.487

31629 26777 TUIT 6000.00 2018-06-13 00:00:00.000

31628 26777 INS 1200.00 2018-06-13 00:00:00.000

31627 26777 BOOK 1200.00 2018-06-13 00:00:00.000

30963 26777 ARTSUP 25.00 2017-05-03 08:13:55.527

Then, save an amount of 10,000 or less and verify that it did post:

SaTransId SyStudentId SaBillCode Amount PostDate

32328 26777 ATTENDNC 10000.00 2019-04-23 12:48:51.377

32057 26777 BOOK 55.00 2018-08-13 11:39:47.487

31629 26777 TUIT 6000.00 2018-06-13 00:00:00.000

31628 26777 INS 1200.00 2018-06-13 00:00:00.000

31627 26777 BOOK 1200.00 2018-06-13 00:00:00.000

Forms Builder Version 3.6.1 789 Help Guide

Resources
This section contains reference material that may assist you when designing and testing forms and sequences.

Forms Builder Version 3.6.1 790 Help Guide

OData Queries
Forms Builder supports list controls such as Drop-down, Multiselect, and Typeahead. Each list control has a Lookup
Query property that is used to retrieve specific values from the database. Lookup Queries are specified as OData
queries.

In Forms Builder 3.1 and later, most list controls include a default OData query in the model metadata which pop-
ulates the Lookup Query property setting when that property is selected in Form Designer. In Forms Builder 3.0,
however, most of the list controls do not have a default query. You can use the View feature in the Web Client of
CampusNexus Student to construct queries or build your own OData queries using the CampusNexus data model
as a reference.

Forms Builder 3.4 and later supports OData queries using Occupation Insight as a data source.

Forms Builder Version 3.6.1 791 Help Guide

Build Queries Using Views for CampusNexus Student
The Web Client for CampusNexus Student provides the Views feature which enables you to create OData queries
that can be used to populate the Lookup Query value for list Fields or Components in Form Designer.

To access the Web Client for CampusNexus Student, open theAbout Forms Builder window, and copy the Stu-
dent Base URL into a browser.

Create a View and Export a Query

1. Log in to the Web Client for CampusNexus Student at the Student Base URL.

2. Click theViews tile.

3. Click theNew View button.

4. Add data to the view by selecting appropriate values from the following categories:

l Modules (e.g., Academics, Admissions, Career Services, Common.)

l Objects (e.g., Programs, Buildings)

l Properties (e.g., Active, Number of Rooms, Contact Name)

Click to move your selections to the Selected Properties box.

5. In the Selected Properties box, select the property you want to sort and click to move your selection
to the Sort Order box.

6. Select appropriateConditions in the query to filter the data in the view (e.g., And/Or, Property, Operator,
Value).

7. Click Run Query in the toolbar and review the results.

In our example, the following query was constructed and executed:

l The StudentCourses object was selected.
l The Id, Status, Course.Code and Student.Id properties were selected.
l The Sort Order is by Course.Code.
l The Conditions filter by Status (S=scheduled) and StudentId.

The query returns all scheduled student courses.

Forms Builder Version 3.6.1 792 Help Guide

8. Click at the top right of the toolbar to access theQuery URL. The Copy the URL to the clipboard window
is displayed.

9. Click OK and paste the URL into Notepad.

In our example, the URL is as follows:

http://cltqafb7.campusmgmt.com:80/Cmc.Nexus.Web/ds/campusnexus/Stu-
dentCourses?$filter=Status eq 'S' and Student/Id eq 52055&$orderby-
y=Course/Code&$select=Id,Status&$expand=Course($select=Code),Student($select=Id)

The URL contains both the Student Base URL and the OData query (highlighted).

You can validate this query by pasting it in any browser window.

Forms Builder Version 3.6.1 793 Help Guide

10. Paste the OData query into the Lookup Query field in Form Designer.

Notes:

Replace the StudentId value (52055) with an expression representing the studentEntity.Id in the data
model so that the query for student courses will be applicable to any student.

StudentCourses?$filter=Status eq 'S' and Student/Id eq {{vm.-
models.studentEntity.Id}}$orderby=Course/Code&$select=Id,Status&$expand=Course
($select=Code),Student($select=Id)

The above OData query assumes that {{vm.models.studentEntity.Id}} is populated before this query
is being executed. The value of such variable can be populated in Workflow, in a previous form or even in the
same form.

Populate the Lookup Query in Form Designer

After testing the OData query, paste it in the Lookup Query field of the list control in the Property Settings pane in
Form Designer.

Forms Builder Version 3.6.1 794 Help Guide

Notes:

l Depending on the columns retrieved by the query, adjust the Lookup Display Member, Lookup Sort Member,
and Lookup Value Member properties. The default values "Name" and "Id" are not applicable if the query
does not retrieve "Name" and "Id" values.

l The Product specified in the Property Settings pane is the query provider. When you are customizing a
Lookup Query, make sure that the Product value (e.g., "Student") matches the database that is being queried.

Lookup Queries for CampusNexus CRM Metadata

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

Forms Builder Version 3.6.1 795 Help Guide

Build Queries Using the Data Model
The CampusNexus data model provides most of the information that is displayed in the Property Settings pane in
Form Designer. The CampusNexus data model is parsed and its metadata is extracted to populate the Property Set-
tings. The data model is exposed and can be used as a reference to build OData queries in Forms Builder.

View the Metadata

The CampusNexus data model provides a query model and a command model. For the purposes of constructing
OData queries, refer to the query model. The query model is available at the following URL:

<Base URL>/ds/metadata/ModelMetadata/GetFullModel

Where <Base URL> is the Student Base URL displayed in the "About Forms Builder" window.

In this example, the query model is available at:

http://cltqafb4.campusmgmt.com:9500/ds/metadata/ModelMetadata/GetFullModel

Search the metadata for the entity you are working, e.g., "Students". The metadata for the "Student" entity provide
several prebuilt OData queries. Note that all pre-built queries contain "select" options for the Code, Name, and Id
columns and are ordered by Name.

Example: Student Entity Metadata (Excerpt)

-<EntityType cmcedm:Description="Students" cmcedm:PluralDisplayName="Students"

Forms Builder Version 3.6.1 796 Help Guide

cmcedm:DisplayName="Student" cmcedm:Browsable="true" Name="Student">

-<Key>
<PropertyRef Name="Id"/>
</Key>

<Property cmcedm:DisplayName="Id" cmcedm:Browsable="true" Name="Id" cmcedm:Editable="true" Nul-
lable="false" Type="Edm.Int32" cmcedm:Required="true"/>

<Property cmcedm:Description="Campus" cmcedm:DisplayName="Campus" cmcedm:Browsable="false" Name-
e="CampusId" cmcedm:Editable="true" Nullable="false" Type="Edm.Int32" cmcedm:Required="true" cmced-
m:Lookup="true" cmcedm:LookupQueryValueColumn="Id"
cmcedm:LookupQueryName="Campuses?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name"/>

<Property cmcedm:Description="Current Employer" cmcedm:DisplayName="Current Employer" cmced-
m:Browsable="false" Name="EmployerId" cmcedm:Editable="true" Type="Edm.Int32" cmcedm:Lookup="true"
cmcedm:LookupQueryValueColumn="Id" cmcedm:LookupQueryName="Employ-
ers?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name"/>

<Property cmcedm:Description="Employment Status" cmcedm:DisplayName="Employment Status" cmced-
m:Browsable="false" Name="EmploymentStatusId" cmcedm:Editable="true" Type="Edm.Int32" cmced-
m:Lookup="true" cmcedm:LookupQueryValueColumn="Id"
cmcedm:LookupQueryName="EmploymentStatuses?$select=Code,Name,Id&$filter=IsActive eq true&$orderby-
y=Name"/>

Execute a Query

You can copy a query from the metadata, append the query to the Student Base URL, and view the query results in
a browser.

1. Access the Student Base URL in a browser. In our example, the Student Base URL is as follows:

http://cltqafb3.campusmgmt.com:8080/Cmc.Nexus.Web/ds/campusnexus/$metadata

2. Remove $metadata from the URL

3. Copy a query from the metadata to the clipboard. In our example, the query is as follows:

PreviousEducationCodes?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name

This query selects the Code, Name, and ID from the PreviousEducationCode field, filters by Active, and sorts
by Name.

4. Append the query to the Student Base URL.

p>http://cltqafb3.campusmgmt.com:8080/Cmc.Nexus.Web/ds/campusnexus/Pre-
viousEducationCodes?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name

5. Press Enter to run the query in the browser.

Note: Use Chrome or Firefox to run the query. Internet Explorer will download the query.

Forms Builder Version 3.6.1 797 Help Guide

The browser displays the query results. In our example, the list of active Previous Education Codes is dis-
played.

Modify a Query

You can modify the query in the URL of the browser to obtain the desired results.

Change the Sort Order

For example, you can change sort order to sort by Id instead of Name.

Remove the "select" Option

To retrieve the data in all columns of a field, you could remove the "select" option for the columns.

For example, change the query from:

p>PreviousEducationCodes?$select=Code,Name,Id&$filter=IsActive eq true&$orderby=Name

to:

PreviousEducationCodes?$filter=IsActive eq true&$orderby=Name

Use the "$expand" Option for Navigation Properties

For entities that have navigation properties, you can build a query that joins a query for navigation property to the
query for the entity.

Forms Builder Version 3.6.1 798 Help Guide

For example, the Campus entity contains the Buildings navigation property. Navigation properties are related
resources for an entity. Use the "$expand" option to expand related resources in line with the retrieved resources.

The following query retrieves all buildings for every campus.

Campuses?$filter=IsActive eq true&$orderby=Id&$expand=Buildings

The basic pattern is as follows: Entities?$option1= …&$option2=…

l Use ? after Entities
l Specify query options such as filter, expand, and orderby. Each option should be prefixed with $.
l Combine attributes using &.

Change the "$filter" Option

To retrieve the buildings for one campus only, you could filter by Active campuses and by Campus Id as follows:

Campus?filter=IsActive eq true and ID eq 5 orderby=Id $expand=Buildings

Build a Cascading Query Using AngularJS

Forms Builder supports two-way binding using AngularJS expressions. Angular expressions can be part of an OData
queries adding flexibility and scope.

Example:

The following query retrieves Buildings in Active status for Campus Id=5.

Buildings?filter=IsActive eq true and CampusId eq 5

The CampusId is represented by the Model property in the Property Settings. The Model value is vm.-
models.studentEntity.CampusId. The Model value can be added to the LookupQuery using AngularJS syntax
(enclosed in double curly braces).

Buildings?filter=IsActive eq true and CampusId eq {{vm.models.studentEntity.CampusId}}

The resulting query is a cascading filter that retrieves Buildings in Active status for any campus that is represented by
the Model value.

This query is added to a drop-down control for Buildings. The control is added to a form that also contains a drop-
down control for Campuses. On the rendered form, the user can select a Campus, and based on the selected Cam-
pus, the drop-down for Buildings will list only buildings associated with the selected campus.

OData Syntax Reference

To learn more about the OData query syntax, see http://www.odata.org/ and look for “Basic Tutorial” and
“Advanced Tutorial”.

http://www.odata.org/

Forms Builder Version 3.6.1 799 Help Guide

Populate the Lookup Query in Form Designer

After testing the OData query in the browser, paste it in the Lookup Query field of the list control in the Property Set-
tings pane of Form Designer.

Notes:

l Depending on the columns retrieved by the query, adjust the Lookup Display Member, Lookup Sort Member,
and Lookup Value Member properties. The default values "Name" and "Id" are not applicable if the query
does not retrieve "Name" and "Id" values.

l The Product specified in the Property Settings pane is the query provider. When you are customizing a
Lookup Query, make sure that the Product value (e.g., "Student") matches the database that is being queried.

Lookup Queries for CampusNexus CRM Metadata

Forms Builder Version 3.6.1 800 Help Guide

For any drop-down or search controls that will be populated via a lookup query, the CampusNexus CRM user needs
to enter values for the Lookup Display Member and Lookup Sort Member attributes. The Lookup Query and
Lookup Value Member property settings should have default values (if applicable for the selected property) as
these are currently specified in the metadata.

Forms Builder Version 3.6.1 801 Help Guide

Run Queries in Web Client for CampusNexus CRM
System integrators can view the results of a lookup query that is available in the Web Client for CampusNexus CRM.
Prior to integrating with CampusNexus CRM, this functionality helps an integrator to verify the list of values that will
be displayed in their query.

1. Suffix the Web Client URL as follows: http://<web client url>/nexuscrmodata/$metadata.

The webpage that is displayed includes lookup queries that are available by default.

2. Search for the text “lookup” and then navigate to the query that you want to run.

Example

You want to run the following query to verify the list of available Account types:

LookupQueryName="EnumAccountAccountTypes?$select=Id,DisplayValue&$filter=IsActive eq 1&$orderby-
y=DisplayOrder"

a. Copy the following text from the query:

EnumAccountAccountTypes?$select=Id,DisplayValue&$filter=IsActive eq 1&$orderby=DisplayOrder

b. Append the copied text to the Web Client URL as follows:

http://<Web Client URL>/nex-
uscrmodata/EnumAc-
countAccountTypes?$select=Id,DisplayValue&$filter=IsActive%20eq%201&$orderby=DisplayOrder

c. Press ENTER.

3. The list of values available in the Account Type property is displayed.

Forms Builder Version 3.6.1 802 Help Guide

Build Queries for Occupation Insight
Occupation Insight is a multi-tenant Software as a Service (SaaS) solution. Forms Builder 3.4 and later can be con-
figured to access Occupation Insight as a data source for real-time analytics about the job market. With this con-
figuration, OData queries can be used in Form Designer to retrieve data from the Occupation Insight API.

The configuration for Occupation Insight is done via a name key in the <products> section of the Designer web.-
config file. The baseUrl defines the path for Occupation Insight OData queries.

<add name="Occupation Insight" enabled="true" baseUrl="<Your Occupation Insight API URL>" odataPath-
h="/odata" requestHeaderKey="apiKey" requestHeaderValue="[]"/>

The base URL for your installation of Occupation Insight is displayed in the About window of Forms Builder.

The data returned by the OData queries can be displayed in controls such as Drop-down List, Multiselect, Single-
select Search, Typeahead, and Grid. In these controls, users can select "Occupation Insight" as the Product property
and construct the applicable OData query to retrieve the desired properties from the Occupation Insight data
source.

The Occupation Insight data model is documented in the Campus Management Corp. Occupation Insight Power BI
API at http://cmc-occupation-insights-bi-api.azurewebsites.net/swagger/ui/index#/.

Rendered Form

This form allows the user to view average salaries and projected employment data based on the selected state and
occupation.

Form Layout

The form layout in Form Designer has two columns with Drop-down List, Label, and Grid controls.

http://cmc-occupation-insights-bi-api.azurewebsites.net/swagger/ui/index#/

Forms Builder Version 3.6.1 803 Help Guide

Drop-down List - States

The properties of the Drop-down List for States include the Lookup Query settings and the Product selection.

Forms Builder Version 3.6.1 804 Help Guide

The table below highlights the control properties that are related to the Occupation Insight data source.

Forms Builder Version 3.6.1 805 Help Guide

Control Property Property Value Occupation Insight API

Lookup Display Member StateName

LookupQuery States

Lookup Sort Member StateName

Lookup ValueMember StateId

Model vm.models.stateOI

Product Occupation Insight

Drop-down List - States

Drop-down List - Occupations

The properties of the Drop-down List for Occupations include the Lookup Query settings and the Product selection.

Forms Builder Version 3.6.1 806 Help Guide

The table below highlights the control properties that are related to the Occupation Insight data source.

Forms Builder Version 3.6.1 807 Help Guide

Control Property Property Value Data Source Occupation Insight API

Lookup Display Member OccupationName

LookupQuery Occupations

Lookup Sort Member OccupationName

Lookup ValueMember OccupationId

Model vm.models.occupationOI

Product Occupation Insight

Drop-down List - Occupations

Grid - SalariesByState

The grid for SalariesByState consists of one column that displays the Salary50Percentile value retrieved using the
Occupation Insight API.

Forms Builder Version 3.6.1 808 Help Guide

The table below highlights the control properties that are related to the Occupation Insight data source.

Forms Builder Version 3.6.1 809 Help Guide

Control
Property

Property Value
Occupation
Insight API

Model vm.models.salariesOI

OData
Query

SalariesByState?$filter=StateId eq {{vm.models.stateOI}} andOccupationId eq {{vm.-
models.occupationOI}}

Note: This query is linked to the selection of the StateId andOccupationId in the Drop-
down Lists above. TheModel property binds the Drop-down Lists to the following values:

l vm.models.stateOI
l vm.models.occupationOI

Product Occupation Insight

Grid - SalariesByState

Grid - OccupationStateProjections

The grid for OccupationStateProjections consists of two columns that display the EmploymentCurrent and Employ-
mentFuture values retrieved using the Occupation Insight API.

Forms Builder Version 3.6.1 810 Help Guide

The table below highlights the control properties that are related to the Occupation Insight data source.

Forms Builder Version 3.6.1 811 Help Guide

Control
Property

Property Value
Occupation
Insight API

Model vm.models.employmentOI

OData
Query

OccupationStateProjections?$filter=StateId eq {{vm.models.stateOI}} andOccupationId
eq {{vm.models.occupationOI}}

Note: This query is linked to the selection of the StateId andOccupationId in the Drop-
down Lists above. TheModel property binds the Drop-down Lists to the following values:

l vm.models.stateOI
l vm.models.occupationOI

Product Occupation Insight

Grid - OccupationStateProjections

Forms Builder Version 3.6.1 812 Help Guide

Exposed Events
Forms Builder was enhanced to expose specific events from rendered components outside of the Renderer applic-
ation domain. There are multiple uses to this capability. For example, analytics tools can access this data to provide
metrics on how users of the rendered sequences are completing the forms within the sequence.

This enhancement also gives developers access to the raised events. It makes it easier to write custom JavaScript
code by constructing a JavaScript function with the name of the event handler plus parameter.

Form Events

The form events occur at the beginning of a sequence when navigating to a sequence and at the end of a sequence
when navigating to a new URL, i.e., away from the current sequence.

Since form events are very sensitive to timing, we recommend placing the HTML component with the event handlers
in the Welcome page (or at least the page before the form where the events occur). This ensures that the event hand-
lers are defined before the events occur.

vmEventHandlersRef.cmcFormViewContentLoaded = function(payload){
Occurs when form view is completely loaded

payload object contains:
models – reference to the models passed to and from a workflow
rootScope – angular $rootScope

}

vmEventHandlersRef.cmcFormRouteChangeStart = function(payload){
payload object contains:
models – reference to the models passed to and from a workflow (may not be defined for certain

routes)
rootScope – angular $rootScope
fromRoute – route from which we are coming
toRoute – route to which we are going
event – event object for routeChangeStart

}

vmEventHandlersRef.cmcFormRouteChangeSuccess = function(payload){
payload object contains:
models – reference to the models passed to and from a workflow
rootScope – angular $rootScope
event – event object for routeChangeSuccess
current – current route
previous – previous route

}

Component Events

Event Scheduler (Calendar/Scheduler Component)
vmEventHandlersRef.cmcEventSchedulerInitialized = function(payload){

Forms Builder Version 3.6.1 813 Help Guide

payload object contains:
key – used to address data about pending OData query
control – reference to the control itself
id – id of the control
isOdataQuery – true or false
element – reference to the DOM element for the control
query – value of the OData query
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcEventSchedulerDataBound = function(payload){
payload object contains:

key – used to address data about pending OData query
control – reference to the control itself
id – id of the control
isOdataQuery – true or false
element – reference to the DOM element for the control
query – value of the OData query
models – reference to the model values passed to and from workflow
data – data bound to the scheduler
firstBind – true or false

}

Checkbox
vmEventHandlersRef.cmcCheckBoxChange = function(payload){

payload object contains:
element – reference to the DOM element of the control
id – id of the control
value – the value will be true if the checkbox selected; false if unselected
models – reference to the model values passed to and from workflow

}

Date Picker
vmEventHandlersRef.cmcDatePickerChange = function(payload){

If “Ignore Time” is false:
payload object contains:
value – Model value. Datetime object with offset. This value is weighted by its offset. Since the

object of this component is to pick a date only, this is undesirable if the time will cause the
date to shift either one day back or one day forward depending on the time zone the browser is loc-
ated in compared to the actual time. To avoid this, “Ignore Time” should be set to true.

formattedDate - ISO 8601 format date, time, and offset string
fullDateTime – culture dependent value of the date and time
isoDateTime – ISO 8601 format date represented as UTC
control – reference to the control itself
validator – reference to a validator which will contain a validate() method
id – id of the control
models – reference to the model values passed to and from workflow

If “Ignore Time” is true (recommended for most situations):
payload object contains:
control – reference to the control itself
validator – reference to a validator which will contain a validate() method
value – ISO 8601 format date. This will both take and produce an ISO 8601 date only string value.

A value set in a workflow will cause the ISO string returned to this control to have no offset.
This means that it will be the same date in any browser in the world, regardless of time zone.

Forms Builder Version 3.6.1 814 Help Guide

id – id of the control
models – reference to the model values passed to and from workflow

}

Date Time Picker
vmEventHandlersRef.cmcDateTimePickerInitialized = function(payload){

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcDateTimePickerChange = function(payload){
payload object contains:
control – reference to the control itself
id – id of the control
validator – reference to a validator which will contain a validate() method
value – Model value. ISO 8601 format date, time, and offset string.
models – reference to the model values passed to and from workflow

}

Drop-down List
vmEventHandlersRef.cmcDropDownListInitialized = function(payload){

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
reload – function to reload the control
component – reference to component that encapsulates control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcDropDownListSelect = function(payload){
payload object contains:
sender – reference to the drop-down list control itself
text – the text field before selection
value – the value field before selection
validator – reference to a validator which will contain a validate() method
id – id of the control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcDropDownListChange = function(payload){
payload object contains:
sender – reference to the control itself
isInList – true or false
text – the text field for the selection
value – the value field for the selection
validator – reference to a validator which will contain a validate() method
id – id of the control
models – reference to the model values passed to and from workflow

}

Forms Builder Version 3.6.1 815 Help Guide

vmEventHandlersRef.cmcDropDownListDataBound = function(payload){
payload object contains:
sender – reference to the drop-down list control itself
id – id of the control
models – reference to the model values passed to and from workflow

}

Grid
vmEventHandlersRef.cmcGridInitialized = function(payload){

payload object contains:
key – used to address data about pending OData query. Can be main query or column query.
control – reference to the control itself
queryType – “mainOData” or “dropdownlist”. Type of query
id – id of the control
isOdataQuery – true or false
element – reference to the DOM element for the control
query – value of the OData query
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcGridDataBound = function(payload){
payload object contains:
key – used to address data about pending OData query. Can be main query or column query.
id – id of control
data – data bound to the grid
queryType – “mainOData” or “dropdownlist”. Type of query
control – reference to the control itself
element – reference to the DOM element for the control
isOdataQuery – true or false
query – value of the OData query
firstBind - true or false, whether this is the first dataBound call
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcGridAngularOnChanges = function(payload){
payload object contains:
changes – object containing information about what changed in the control directives, e.g.,

fbColumns and fbOdataQuery are two changes. isFirstChange can be checked to ignore initialization.
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcGridSyncModel = function(payload){
Occurs when model is updated

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
data – data used to update the model
models – reference to the model values passed to and from workflow
keys – model properties updated
model – model property updated

}

Forms Builder Version 3.6.1 816 Help Guide

vmEventHandlersRef.cmcGridEdit = function(payload){
Occurs when data is edited

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
data – data used to update the model
models – reference to the model values passed to and from workflow
event – event parameter document for Kendo Grid edit event

}

vmEventHandlersRef.cmcGridRemove = function(payload){
Occurs when data is removed

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
data – data used to update the model
models – reference to the model values passed to and from workflow
event – see event parameter documentation for Kendo Grid remove event

}

vmEventHandlersRef.cmcGridSave = function(payload){
Occurs when data is saved

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
data – data used to update the model
models – reference to the model values passed to and from workflow
event – see event parameter documentation for Kendo Grid save event

}

Hyperlink
vmEventHandlersRef.cmcHyperlinkClick = function(payload){

payload object contains:
id – id of the control
href – url for the hyperlink
text – text of the hyperlink
models – reference to the models passed to and from a workflow
thisObj – reference to “this”, the angular scope object
models – reference to the model values passed to and from workflow

}

Masked Text Box
vmEventHandlersRef.cmcMaskedTextBoxBlur = function(payload){

payload object contains:
control – reference to the control itself
id – id of the control
value – value of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcMaskedTextBoxChange = function(payload){

Forms Builder Version 3.6.1 817 Help Guide

payload object contains:
control – reference to the control itself
id – id of the control
value – value of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

Multiselect
vmEventHandlersRef.cmcMultiSelectInitialized = function(payload){

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow
reload – function to refresh the control

}

vmEventHandlersRef.cmcMultiSelectDataBound = function(payload){
payload object contains:
sender – reference to the drop-down list control itself
id – id of the control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcMultiSelectChange = function(payload){
payload object contains:
control – reference to the control itself
element – reference to the DOM element of the control
validator – reference to a validator which will contain a validate() method
values – array of values selected
id – id of the control
models – reference to the model values passed to and from workflow

}

Numeric Text Box
vmEventHandlersRef.cmcNumericTextBoxInitialized = function(payload){

payload object contains:
control – reference to the control itself
id – id of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcNumericTextBoxBlur = function(payload){
payload object contains:
control – reference to the control itself
id – id of the control
value – value of control before the blur
element – reference to the DOM element for the control
models – reference to the model values passed to and from workflow

}

Forms Builder Version 3.6.1 818 Help Guide

vmEventHandlersRef.cmcNumericTextBoxChange = function(payload){
Note this event does not fire when the spin buttons increment and decrement values. The spin event
was not implemented in the core-ui component.

payload object contains:
control – reference to the control itself
id – id of the control
value – value of the control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

Radio Button
vmEventHandlersRef.cmcRadioButtonChange = function(payload){

payload object contains:
element – reference to the DOM element of the control
id – id of the control
value – value of the selected radio button in a group of radio buttons
models – reference to the model values passed to and from workflow

}

Single-select Search

Note: The template for the Single-select Search control was updated. To pick up the new template and access the
exposed events, the form containing the control needs to be re-saved .

vmEventHandlersRef.cmcSingleSelectSearchInitialized = function(payload){
payload object contains:

component - reference to the control itself
id – id of control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
odataPromise – promise for OData request - unresolved
resetOriginal – function to reload the control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcSingleSelectSearchDataBound = function(payload){
payload object contains:

component - reference to the control itself
id – id of control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
odataPromise – promise for OData request - resolved
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcSingleSelectSearchChange = function(payload){
payload object contains:

id – id of control
value – value of control
element – reference to the DOM element for the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

Text Box

Forms Builder Version 3.6.1 819 Help Guide

vmEventHandlersRef.cmcTextBoxChange = function(payload){
payload object contains:
id – id of the control
value – value of control
element – reference to the DOM element for the control
models – reference to the model values passed to and from workflow

}

vmEventHandlersRef.cmcTextBoxBlur = function(payload){
payload object contains:
id – id of the control
value – value of control
element – reference to the DOM element for the control
models – reference to the model values passed to and from workflow

}

Time Picker
vmEventHandlersRef.cmcTimePickerChange = function(payload){

payload object contains:
value – datetime object. Convert to string with .toString()
control – reference to the control itself
formattedValue – formatted per format specification
id – id of the control
validator – reference to a validator which will contain a validate() method
models – reference to the model values passed to and from workflow

}

Examples of External Event Listeners

All events except form events have an id. You can put event listeners in a non-visible HTML component on the page.
A test that would verify your code could be executed would be to prove the event occurred:

<script>
vmEventHandlersRef.cmcMaskedTextBoxChange = function(payload) {

// An alert can be used to pop up a window
alert("Got cmcMaskedTextBoxChange for id " + payload.id);

// Or you can simply write a message to the console window
console.log("Got cmcMaskedTextBoxChange for id " + payload.id);

}
</script>

Note that this can be debugged in the debuggers built in to Firefox, Chrome, Edge, IE, etc. See external doc-
umentation on using these.

Advanced external events – the sky is the limit in what you could get your own code to do based on an event on a
form. Example: call an external website to do something. You want to increment a counter every time a student
picks Zimbabwe as a country. This would be something you could capture from the drop-down list and in a
cmcDropDownListChange event handler you could send a post to an external website crafted for that purpose, but
conditionally, only if the “text” property was “Zimbabwe”. The external website call could be done with a JQuery
$ajax call. Some of the libraries already built into Renderer are JQuery, Angularjs, LoDash, w3 (from w3schools.com),
moment, kendo, rxjs.

Forms Builder Version 3.6.1 820 Help Guide

Debugging tip: Add the statement “debugger;” to your external event handler code. This will cause it to stop in
debug mode in your browser and you can then examine the values of variables and step forward through your
code.

Forms Builder Version 3.6.1 821 Help Guide

Cheat Sheets

Cascading Style Sheets: CSS Cheat Sheet

HTML5: HTML5 Visual Cheat Sheet

AngularJS expressions: https://docs.angularjs.org/guide/expression

Comparison and logical operators: https://www.w3schools.com/js/js_comparisons.asp

Regular expressions: http://regexlib.com/CheatSheet.aspx

https://docs.angularjs.org/guide/expression
https://www.w3schools.com/js/js_comparisons.asp
http://regexlib.com/CheatSheet.aspx

Forms Builder 3.x 822 Installation Verification Procedure

GitHub Repositories
Campus Management Corp. has created a set of community-driven GitHub repositories to help share ideas, solu-
tions, and knowledge about CampusNexus.

For more information, download the attached PDF and refer to the following links:

Campus Management Corp. GitHub Repos-
itories

https://github.com/campusmanagement

Forms Builder Sequence Templates https://github.com/campusmanagement/fb-sequence-tem-
plates

Workflow Samples https://github.com/campusmanagement/workflow-samples

Integration Samples https://github.com/campusmanagement/integration-samples

GitHub Resources https://guides.github.com/

https://github.com/campusmanagement
https://github.com/campusmanagement/fb-sequence-templates
https://github.com/campusmanagement/fb-sequence-templates
https://github.com/campusmanagement/workflow-samples
https://github.com/campusmanagement/integration-samples
https://guides.github.com/

Forms Builder Version 3.6.1 823 Help Guide

CampusNexus CRM Entities
CampusNexus CRM entities are objects that can contain system-defined properties and properties that are manually
configured by the customer. The custom properties are not addressed by the documentation.

Forms Builder supports the same list objects/entities as those that are described in the CampusNexus CRM Events
topic in Workflow Help.

Limitations:

l For the Event object, only the Get operation is supported.

l For the Participant object, only the Get and Update operations are supported.

l For all other objects, the Get, Create, and Update operations are supported.

l The Delete operation is not supported in all objects.

l For external properties in all objects, only the Get activity is supported.

The first 1024 properties are published per entity for Forms Builder use. System-defined properties are published
first and then the custom properties.

Refer to the Managing Objects section in Business Administrator Help to identify the system-defined properties of
CampusNexus CRM objects.

The Show All Fields check box in Form Designer controls whether the entire list of CampusNexus CRM entities is
exposed or only a subset. When the Show All check box is cleared, only the Contact and Lead entities are exposed.

https://help.campusmanagement.com/WF/Content/Workflow/EventsCRMnew.htm?Highlight=crm%20events
https://help.campusmanagement.com/CRM/12.3/Admin/default.htm#Talisma Business Administrator Help/ManagingObjects.htm%3FTocPath%3DBusiness%2520Administrator%2520Help|Managing%2520Objects|_____0

Forms Builder Version 3.6.1 824 Help Guide

Contact
The following table lists the properties of the system-defined fields in the Contact entity. Any additional fields dis-
played in Form Designer are customer-specific and are not included here.

Field Required Type Description

First name Yes SystemString The first name of the Contact you want to create in CampusNexus CRM.

Last name Yes SystemString The last name of the Contact you want to create in CampusNexus CRM.

Middle
name

No SystemString Themiddle name of the Contact you want to create in CampusNexus
CRM.

Name Yes SystemString The name of the Contact you want to create in CampusNexus CRM.

Contact

Forms Builder Version 3.6.1 825 Help Guide

Lead
The following table lists the properties of the system-defined fields in the Lead entity. Any additional fields displayed
in Form Designer are customer-specific and are not included here.

Field Required Type Description

First name Yes SystemString The first name of the Lead you want to create in CampusNexus CRM.

Last name Yes SystemString The last name of the Lead you want to create in CampusNexus CRM.

Lead Name Yes SystemString The name of the Lead you want to create in CampusNexus CRM.

Middle name No SystemString Themiddle name of the Lead you want to create in CampusNexus CRM.

Team Yes SystemInt64 A unique ID used to identify a Team or Campus in CampusNexus CRM.

Lead

Forms Builder Version 3.6.1 826 Help Guide

CampusNexus Student Entities
The following tables list the properties of fields in CampusNexus Student entities that are exposed in Form Designer
when the "Select All" filter is cleared. If you need to reference properties of other entities and fields (when the "Select
All" filter is selected), please refer to the CampusNexus Student Object Library.

https://www.mycampusinsight.com/Documentation-Center/Help/Help_Home/Content/models.htm

Forms Builder Version 3.6.1 827 Help Guide

Admissions Deposit
When the Admissions Deposit entity is selected, Form Designer exposes the following properties of the Depos-
itEntity class.

Field
Table :
Column

Required Type Description Example

Academic
Year
Sequence

AmDeposit :
AySeq

No Nullable<Int16> Academic year sequence number 1

Amount AmDeposit :
Amount

Yes Decimal Deposit amount 65.00

Check Num-
ber

AmDeposit :
CheckNo

Conditional String Check number; MaxLength(20);
required if payment type is H.

464635890900

Credit Card AmDeposit :
SaCCID

No Nullable<Int32> Student credit card identifier 3

Deposit
Type

AmDeposit :
DepositType

No Nullable<Int16> Valid values are :
l 1 - Housing Deposit
l 2 - Other Deposits

2

Enrollment AmDeposit :
AdEnrollID

No Nullable<Int32> Student enrollment period iden-
tifier

112309

Name AmDeposit :
Descrip

No String Description of the deposit;
MaxLength(30)

Deposit
Received

Paid By AmDeposit :
SyAddressID

No Nullable<Int32> Identifier of the person who pos-
ted the deposit (Student Rela-
tionship Address Id)

0

Payment
Date

AmDeposit :
DateReceived

Yes DateTime Deposit received date 10/31/2016

Payment
Type

AmDeposit :
PaymentType

No String Valid values are :
l C - Cash
l H - Check
l R- Credit Card

H

Receipt
Number

AmDeposit :
ReceiptNo

No String Receipt number; MaxLength(16) 16-2113-006

Term AmDeposit :
AdTermID

No Nullable<Int32> Term identifier 12891

Transaction
Code

AmDeposit :
SaBillCodeID

No Nullable<Int32> Billing transaction code identifier 0

DepositEntity

Forms Builder Version 3.6.1 828 Help Guide

Applicant Areas of Study
When the Applicant Areas of Study entity is selected, Form Designer exposes the following properties of the Applic-
antAreaOfStudyEntity class.

Field Table : Column Required Type Description Example

AreaOf
Study Id

AdConcentrationByEnrollment :
AdConcentrationID

Yes Int32 Identifier for the concentration
within an area of study

167

ApplicantAreaOfStudyEntity

Forms Builder Version 3.6.1 829 Help Guide

Applicants
When the Applicants entity is selected, Form Designer exposes the following properties of the ApplicantEntity class.

Field Table : Column Required Type Description Example

Application
Received Date

AdEnroll :
AppRecDate

No Nullable<DateTime> Application received
date

10/31/2016

Application Type AdEnroll : AmAp-
plicantTypeID

No Nullable<Int32> Application type iden-
tifier

2

AreaOf Study Id See Applicant Areas of Study.

Campus AdEnroll : SyCam-
pusID

Yes Int32 Campus identifier 4

Enrollment Date AdEnroll : EnrollDate No Nullable<DateTime> Enrollment date 10/31/2016

Expected Gradu-
ation Date

AdEnroll : GradDate No Nullable<DateTime> Expected graduation
date

10/31/2018

Expected Start
Date

AdEnroll :
ExpStartDate

No Nullable<DateTime> Expected start date 10/31/2016

Expected Start
Term

AdEnroll : AdTermID No Nullable<Int32> Expected start term
identifier

12907

Externship Start
Date

AdEnroll : Extern-
BeginDate

No Nullable<Int32> Externship start date 10/31/2017

Financial Aid
Entrance Date

AdEnroll : FaEn-
trDate

No Nullable<Int32> Financial aid entrance
interview date

10/31/2016

Pending Enroll-
ment Number

AdEnroll : StuNum No String Student enrollment
number

100234

Previous Edu-
cation

AdEnroll : AmPre-
vEducID

No Nullable<Int32> Previous education
identifier

1

Program AdEnroll : AdPro-
gramID

No Nullable<Int32> Program identifier 2

Program Version AdEnroll : AdPro-
gramVersionID

No Nullable<Int32> Program version iden-
tifier

55

Shift AdEnroll : AdShiftID No Nullable<Int32> Shift identifier 1

Version Start
Date

AdEnroll :
AdStartDateID

No Nullable<Int32> Version start date
identifier

10/31/2016

Zone AdEnroll : AmZoneId No Nullable<Int32> Region/distance zone
identifier

32

ApplicantEntity

Forms Builder Version 3.6.1 830 Help Guide

Document
When the Document entity is selected, Form Designer exposes the following properties of the DocumentEntity
class.

Field Table : Column Required Type Description Example

Award Year CmDocument :
AwardYear

No String Award year;
MaxLength(7)

2016-01

Date Reques-
ted

CmDocument : DateReq No Nullable<DateTime> Requested date 10/31/2016

Date Sent CmDocument : DateSent No Nullable<DateTime> Sent date 10/31/2016

Document CmDocument : Docu-
mentImage

No Byte[] The document image
associated with this
DocumentEntity

0x255042..

Document
Status

CmDocument :
CmDocStatusID

Yes Int32 Document status
identifier

3

Document
Transcript
Request

See Document Transcript Request.

Document
Type

CmDocument :
CmDocTypeID

Yes Int32 Document type iden-
tifier

23

Due Date CmDocument : DateDue No Nullable<DateTime> Document due date 10/31/2016

Enrollment CmDocument : AdEn-
rollID

No Nullable<Int32> Student enrollment
period identifier

5

Expiration
Date

CmDocument : DateEx-
pires

No Nullable<DateTime> Document expiration
date

10/31/2016

Image Type CmDocument :
ImageType

No String Document image
type; MaxLength(3)]

2

Module CmDocument : SyMod-
uleID

Yes Int32 Module identifier 2

Note CmDocument : Com-
ments

No String Notes about the doc-
ument

Reinstated
student

Permit CmDocument : IsPermit No Boolean Is this a permit doc-
ument?

0

Received
Date

CmDocument : DateRecv No Nullable<DateTime> Date the document
was received

10/31/2016

DocumentEntity

Forms Builder Version 3.6.1 831 Help Guide

Field Table : Column Required Type Description Example

Student
Placement

CmDocument : PlStu-
dentPlacementID

No Nullable<Int32> Student placement
identifier

1

Transcript
Request

CmDocument : CmDocu-
mentTranscriptID

No Nullable<Int32> Document transcript
request identifier

1

Forms Builder Version 3.6.1 832 Help Guide

Document Transcript Request
When the Document Transcript Request entity is selected, Form Designer exposes the following properties of the
DocumentTranscriptRequestEntity class.

Field Table : Column Required Type Description Example

Attendance
Dates: From

CmDocumentTranscript :
AttendBeginDate

No Nullable<DateTime> Attendance
begin date

10/31/2014

Fee CmDocumentTranscript :
Fee

No Nullable<Decimal> Document tran-
script request
fee

35.00

Institution CmDocumentTranscript :
AmCollegeID

No Nullable<Int32> College iden-
tifier

1

Institution CmDocumentTranscript :
AmHighSchoolID

No Nullable<Int32> High school
identifier

9

Note CmDocumentTranscript :
Comment

No String Comment or
note;
MaxLength
(4000)

Incomplete

Program of
Study

CmDocumentTranscript :
ProgramOfStudy

No String Program of
study;
MaxLength
(255)

Specialist in Edu-
cation - Distance
Learning

Request
Type

CmDocumentTranscript :
RequestIndicator

Yes Int16 Request type 1

To CmDocumentTranscript :
AttendEndDate

No Nullable<DateTime> Attendance end
date

10/31/2016

DocumentTranscriptRequestEntity

Forms Builder Version 3.6.1 833 Help Guide

ISIR Verification
When the ISIR Verification entity is selected, Form Designer exposes the following properties of the IsirVeri-
ficationEntity class.

Field Table : Column Required Type Description Example

Field Num-
ber

FaISIRVerification : FieldNumber No String Field number; MaxLength(3) 053

New Value FaISIRVerification : Veri-
ficationValue

No String Verification value; MaxLength
(50)

6016

IsirVerificationEntity

Forms Builder Version 3.6.1 834 Help Guide

Pending Applicant
When the Pending Applicant entity is selected, Form Designer exposes the following properties of the Pend-
ingApplicantEntity class.

Field Table : Column
Requir-
ed

Type Description Example

Alien
Number

AmOnlineApplicant :
AlienNo

No String Alien number;
MaxLength(9)

123456789

Applicant
Type Id

AmOnlineApplicant :
AmApplicantTypeID

No Nullable<Int32> Applicant type iden-
tifier

25

Areas of
Study

See Pending Applicant Area of Study.

Campus
Id

AmOnlineApplicant :
CampusID

No Nullable<Int32> Campus identifier 10

Citizen Id AmOnlineApplicant :
CitizenID

No Nullable<Int32> Citizen identifier 1

City AmOnlineApplicant :
City

No String City; MaxLength(25) Chicago

Country
Id

AmOnlineApplicant :
SyCountryID

No Int32 Country identifier 1

Credit
Card
Expir-
ation
Date

AmOnlineApplicant :
CardExpiration

No <Nul-
lable>DateTime

Card expiration date 10/31/2020

Credit
Card
Holder
City

AmOnlineApplicant :
CardHolderCity

No String Card holder's city;
MaxLength(30)

Chicago

Credit
Card
Holder
First
Name

AmOnlineApplicant :
CardHolderFirstname

No String Card holder's first
name; MaxLength
(50)

Mindy

PendingApplicantEntity

Forms Builder Version 3.6.1 835 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Credit
Card
Holder
Last
Name

AmOnlineApplicant :
CardHolderLastname

No String Card holder's last
name; MaxLength
(50)

Mayer

Credit
Card
Holder
Name

AmOnlineApplicant :
CardHolderName

No String Card holder's name;
MaxLength(50)

Credit
Card
Holder
Postal
Code

AmOnlineApplicant :
CardHolderZip

No String Card holder's postal
code; MaxLength
(15)

33099

Credit
Card
Holder
State

AmOnlineApplicant :
CardHolderState

No String Card holder's state;
MaxLength(2)

HI

Credit
Card
Holder
Street
Address

AmOnlineApplicant :
CardHolderAddr

No String Card holder's street
address; MaxLength
(50)

21Main Street

Credit
Card
Number

AmOnlineApplicant :
CardNumber

No String Card number;
MaxLength(500)

1212-3234-2131-3232

Credit
Card
Type Id

AmOnlineApplicant :
CardTypeId

No Nullable<Int32> Card type identifier 1

Date Of
Birth

AmOnlineApplicant :
DOB

No Nul-
lable<DateTime>

Date of birth 10/31/1995

Date
Added

AmOnlineApplicant :
DateAdded

No DateTime Date and time when
the record was
added.

2019-09-12
08:21:11.000

Date
Modified

AmOnlineApplicant :
DateLstMod

No DateTime Date and time when
the record was last
modified.

2019-12-01
09:22:35.423

Degree
Id

AmOnlineApplicant :
DegreeID

No Nullable<Int32> Degree identifier 2

Forms Builder Version 3.6.1 836 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Driver
License
Number

AmOnlineApplicant :
DrivLic

No String Driver's license num-
ber; MaxLength(20)

R360-555-87-752-0

Driver
License
State

AmOnlineApplicant :
DrivLicState

No String Driver's license
state; MaxLength(2)

IN

Email
Address

AmOnlineApplicant :
Email

No String Email address;
MaxLength(50)

test-
er@campusmgmt.com

Eth-
nicities

See Pending Applicant Ethnicity.

Final
School
Status Id

AmOnlineApplicant :
FinalStatusID

No Nullable<Int32> Final school status
identifier

62

First
Name

AmOnlineApplicant :
FirstName

No String First name;
MaxLength(25)

Mario

Ged
Awarded
Date

AmOnlineApplicant :
GEDAwardedDate

No Nul-
lable<DateTime>

GED awarded date 10/31/2002

Gender
Id

AmOnlineApplicant :
SexID

No Nullable<Int32> Gender identifier 6

Hispanic
Latino

AmOnlineApplicant :
IsHispanic

No String Is Hispanic/Latino;
MaxLength(1)

N

Id AmOnlineApplicant :
AmOnlineApplicantID

Yes Int32 Identifier for the
Pend-
ingApplicantEntity
record.

560

Is Sub-
scribed
To Sms

AmOnlineApplicant :
SubscribeToSMS

No Boolean Indicates whether
the applicant sub-
scribed to SMS

true

Last
Name

AmOnlineApplicant :
LastName

No String Last name;
MaxLength(25)

Romanov

Lead
Source Id

AmOnlineApplicant :
AmLeadSrcID

No Int32 Lead source iden-
tifier

699

Lead
Type Id

AmOnlineApplicant :
AmLeadTypeID

No Nullable<Int32> Lead type identifier 4

Marital
Status Id

AmOnlineApplicant :
MaritalID

No Nullable<Int32> Marital status iden-
tifier

1

Forms Builder Version 3.6.1 837 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Middle
Name

AmOnlineApplicant :
MiddleName

No String Middle name;
MaxLength(100)

Thomas

Mobile
Phone
Number

AmOnlineApplicant :
MobileNumber

No String Mobile phone num-
ber; MaxLength(16)

954-333-1212

Other
Email
Address

AmOnlineApplicant :
OtherEmail

No String Other email
address; MaxLength
(50)

mari-
o@campusmgmt.com

Other
Phone
Number

AmOnlineApplicant :
OtherPhone

No String Other phone num-
ber; MaxLength(16)

305-333-1212

Payment
Amount

AmOnlineApplicant :
PaymentAmount

No Nul-
lable<Decimal>

Payment amount 235.00

Per-
manent
City

AmOnlineApplicant :
PermCity

No String Permanent city;
MaxLength(25)

Jolie

Per-
manent
Country
Id

AmOnlineApplicant :
PermSyCountryID

No Nullable<Int32> Permanent country
identifier

0

Per-
manent
Phone
Number

AmOnlineApplicant :
PermPhone

No String Permanent phone
number; MaxLength
(16)

954-333-1212

Per-
manent
Postal
Code

AmOnlineApplicant :
PermZip

No String Permanent postal
code; MaxLength
(10)

33071

Per-
manent
State

AmOnlineApplicant :
PermState

No String Permanent state;
MaxLength(2)

FL

Per-
manent
Street
Address

AmOnlineApplicant :
PermAddress

No String Permanent street
address; MaxLength
(255)

200 Broadway

Phone
Number

AmOnlineApplicant :
Phone

No String Phone number;
MaxLength(16)

954-333-1212

Forms Builder Version 3.6.1 838 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Postal
Code

AmOnlineApplicant :
Zip

No String Postal code;
MaxLength(10)

30071

Previous
Edu-
cation
History

See Pending Applicant Previous Education.

Previous
Edu-
cation Id

AmOnlineApplicant :
AmPrevEducID

No Nullable<Int32> Previous education
identifier

3

Program
Id

AmOnlineApplicant :
ProgramID

No Nullable<Int32> Program identifier 2

Program
Version
Id

AmOnlineApplicant :
ProgramVersionID

No Nullable<Int32> Program version
identifier

1

Sms Ser-
vice Pro-
vider Id

AmOnlineApplicant :
CMSMSSer-
viceProviderID

No Nullable<Int32> SMS service pro-
vider identifier

2

Ssn AmOnlineApplicant :
SSN

No String Social Security
Number; MaxLength
(16)

444-77-9999

Start
Date

AmOnlineApplicant :
StartDate

No Nul-
lable<DateTime>

Start date 10/31/2016

Start
Date Id

AmOnlineApplicant :
StartDateID

No Nullable<Int32> Start date identifier 1

State AmOnlineApplicant :
State

No String State; MaxLength(2) GA

Street
Address

AmOnlineApplicant :
Address

No String Street address;
MaxLength(255)

6585 Turkey Trail

Title Id AmOnlineApplicant :
AmTitleID

No Nullable<Int32> Title identifier 1

Work
Phone
Number

AmOnlineApplicant :
WorkPhone

No String Work phone num-
ber; MaxLength(16)

678-543-3330

Work
Phone
Number
Exten-
sion

AmOnlineApplicant :
WorkExt

No String Work phone number
extension;
MaxLength(10)

2345

Forms Builder Version 3.6.1 839 Help Guide

Pending Applicant Area of Study
When the Pending Applicant Area of Study entity is selected, Form Designer exposes the following properties of the
PendingApplicantAreaOfStudyEntity class.

Field Table : Column Required Type Description Example

AreaOf
Study Id

AmOnlineApplicantConcentration
: AdConcentrationId

Yes Int32 Identifier for the concentration
within an area of study

2

Is Active AmOnlineApplicantConcentration
: Active

No Nullable
Boolean

Indicates whether the area of
study is active

true

PendingApplicantAreaOfStudyEntity

Forms Builder Version 3.6.1 840 Help Guide

Pending Applicant Ethnicity
When the Pending Applicant Ethnicity entity is selected, Form Designer exposes the following properties of the Pend-
ingApplicantEthnicityEntity class.

Field Table : Column Required Type Description Example

Ethnicity Id AmOnlineApplicantAmRace : AmRaceID No Int32 Ethnicity identifier 8

PendingApplicantEthnicityEntity

Forms Builder Version 3.6.1 841 Help Guide

Pending Applicant Previous Education
When the Pending Applicant Previous Education entity is selected, Form Designer exposes the following properties
of the PendingApplicantPreviousEducationEntity class.

Field Table : Column Required Type Description Example

College Id AmOnlineApplicantPrevEducation :
AmCollegeID

No Nullable
Int32

College identifier 6

Degree Id AmOnlineApplicantPrevEducation :
DegreeID

No Nullable
Int32

Degree identifier 4

Enrollment
Date

AmOnlineApplicantPrevEducation :
DateOfEnrollment

No Nullable
DateTime

Enrollment date 10/31/2016

Gpa AmOnlineApplicantPrevEducation :
GPA

No Decimal Grade point aver-
age

3.2

Graduation
Date

AmOnlineApplicantPrevEducation :
GradDate

No Nullable
DateTime

Graduation date 10/31/2018

Last Atten-
ded Date

AmOnlineApplicantPrevEducation :
LastDateAttended

No Nullable
DateTime

Last attended date 10/31/2014

Major AmOnlineApplicantPrevEducation :
Major

No String Major; MaxLength
(100)

Biology

Other Col-
lege

AmOnlineApplicantPrevEducation :
OtherCollege

No String Other college;
MaxLength(60)

Campus
Institute

PendingApplicantPreviousEducationEntity

Forms Builder Version 3.6.1 842 Help Guide

Pending Prospect Inquiry
When the Pending Prospect Inquiry entity is selected, Form Designer exposes the following properties of the Pend-
ingProspectInquiryEntity class.

Field Table : Column Required Type Description Example

Best Time to
Contact

AmElectronicLeads :
BestTimeToContact

No String Best time to con-
tact; MaxLength(10)

Evening

Birth Date AmElectronicLeads :
DOB

No Nullable
DateTime

Birth date 10/31/1995

Campus AmElectronicLeads :
SyCampusID

No Nullable
Int32

Campus identifier 1

Citizenship AmElectronicLeads :
AmCitizenID

No Nullable
Int32

Citizenship identifier 2

City AmElectronicLeads :
City

No String City; MaxLength(25) Chicago

College AmElectronicLeads :
AmCollegeID

No Nullable
Int32

College identifier 5

Country AmElectronicLeads :
SyCountryID

No Nullable
Int32

Country identifier 3

Disabled AmElectronicLeads :
Disabled

No String Disabled;
MaxLength(1)

N

Email
Address

AmElectronicLeads :
Email

No String Email address;
MaxLength(50)

tester@campusmgmt.com

Ethnicities See Pending Prospect Inquiry Ethnicity.

Expected
Start Date

AmElectronicLeads :
StartDate

No Nullable
DateTime

Expected start date 10/31/2016

Extra Cur-
ricular Activ-
ity

AmElectronicLeads :
AmExtraCurrID

No Nullable
Int32

Extra curricular
activity identifier

8

First Name AmElectronicLeads :
FirstName

No String First name;
MaxLength(25)

Mario

Gender AmElectronicLeads :
AmSexID

No Nullable
Int32

Gender identifier 2

High School AmElectronicLeads :
AmHighSchoolID

No Nullable
Int32

High school iden-
tifier

554

PendingProspectInquiryEntity

Forms Builder Version 3.6.1 843 Help Guide

Field Table : Column Required Type Description Example

High School
Grad Date

AmElectronicLeads :
HSGradDate

No Nullable
DateTime

High school gradu-
ation date

10/31/2014

High School
Grad Year

AmElectronicLeads :
HSGradYear

No String High school gradu-
ation year;
MaxLength(4)

2014

Hispanic AmElectronicLeads :
IsHispanic

No String Is Hispanic;
MaxLength(1)

N

Last Name AmElectronicLeads :
LastName

No String Last name;
MaxLength(25)

Romanov

Lead Source AmElectronicLeads :
AmLeadSrcID

No Nullable
Int32

Lead source iden-
tifier

44

Lead Type AmElectronicLeads :
AmLeadTypeID

No Nullable
Int32

Lead type identifier 3

Marital
Status

AmElectronicLeads :
AmMaritalID

No Nullable
Int32

Marital status iden-
tifier

1

Middle Initial AmElectronicLeads :
MI

No String Middle initial;
MaxLength(1)

M

Middle
Name

AmElectronicLeads :
MiddleName

No String Middle name;
MaxLength(100)

Merlin

Mobile
Phone Num-
ber

AmElectronicLeads :
MobileNumber

No String Mobile phone num-
ber; MaxLength(16)

954-222-9090

Nationality AmElectronicLeads :
AmNationalityID

No Nullable
Int32

Nationality identifier 8

Note AmElectronicLeads :
Comment

No String Note; MaxLength
(2000)

Needs financial aid

Other Email
Address

AmElectronicLeads :
OtherEmail

No String Other email
address; MaxLength
(50)

mario@campusmgmt.com

Other Phone
Number

AmElectronicLeads :
OtherPhone

No String Other phone num-
ber; MaxLength(16)

954-202-8765

Phone Num-
ber

AmElectronicLeads :
Phone

No String Phone number;
MaxLength(16)

954-202-8888

Postal Code AmElectronicLeads :
Zip

No String Postal code;
MaxLength(10)

33088

Forms Builder Version 3.6.1 844 Help Guide

Field Table : Column Required Type Description Example

Previous
Education

AmElectronicLeads :
AmPrevEducID

No Nullable
Int32

Previous education
identifier

3

Program AmElectronicLeads :
AdProgramID

No Nullable
Int32

Program identifier 2

Program
Group

AmElectronicLeads :
AdProgramGroupID

No Nullable
Int32

Program group iden-
tifier

2

Shift AmElectronicLeads :
AdShiftID

No Nullable
Int32

Shift identifier 1

Start Term AmElectronicLeads :
AdTermID

No Nullable
Int32

Start term identifier 2

State AmElectronicLeads :
State

No String State; MaxLength(2) TX

Street
Address

AmElectronicLeads :
Addr

No String Street address;
MaxLength(255)

98 Track Trail

Suffix AmElectronicLeads :
AmSuffixID

No Nullable
Int32

Suffix identifier 1

Title AmElectronicLeads :
AmTitleID

No Nullable
Int32

Title identifier 2

Veteran AmElectronicLeads :
Vet

No String Veteran; MaxLength
(1)

N

Work Phone
Number

AmElectronicLeads :
WorkPhone

No String Work phone num-
ber; MaxLength(16)

954-666-1212

Forms Builder Version 3.6.1 845 Help Guide

Pending Prospect Inquiry Ethnicity
When the Pending Prospect Inquiry Ethnicity entity is selected, Form Designer exposes the following properties of
the PendingProspectInquiryEthnicityEntity class.

Field Table : Column Required Type Description Example

Ethnicity Id AmElectronicLeadsAmRace: AmRaceID No Int32 Ethnicity identifier 8

PendingProspectInquiryEthnicityEntity

See Multiselect for Single Property Collections.

Forms Builder Version 3.6.1 846 Help Guide

Prospect Inquiry
When the Prospect Inquiry entity is selected, Form Designer exposes the following properties of the Pro-
spectInquiryEntity class.

Field Table : Column Required Type Description Example

Campus SyStudentInquiry : SyCam-
pusID

Yes Int32 Campus identifier 32

Interest SyStudentInquiry : AdPro-
gramGroupID

No Nullable
Int32

Program group
identifier

6

Primary Prospect
Source

SyStudentInquiry : AmLeadSr-
cID

No Nullable
Int32

Lead source iden-
tifier

7

Program SyStudentInquiry : AdPro-
gramID

No Nullable
Int32

Program identifier 12

Programs See Prospect Inquiry Program of Interest.

Prospect Date SyStudentInquiry : LeadDate Yes DateTime Lead date 10/31/2016

Prospect Sources See Prospect Inquiry Lead Source.

Prospect Type SyStudentInquiry :
AmLeadTypeID

No Nullable
Int32

Lead type identifier 43

Region SyStudentInquiry : AmZoneID No Nullable
Int32

Region identifier 65

Student See Student.

ProspectInquiryEntity

Forms Builder Version 3.6.1 847 Help Guide

Prospect Inquiry Lead Source
When the Prospect Inquiry Lead Source entity is selected, Form Designer exposes the following properties of the Pro-
spectInquiryLeadSourceEntity class.

Field Table : Column Required Type Description Example

Lead Date amProspectLeadSrc :
SourceDate

No Nullable
DateTime

Lead date 10/31/2016

Lead Source amProspectLeadSrc :
AmLeadSrcID

Yes Int32 Lead source identifier 1

Primary Lead
Source

amProspectLeadSrc :
PrimarySource

No Boolean Is this a primary lead
source?

true

ProspectInquiryLeadSourceEntity

Forms Builder Version 3.6.1 848 Help Guide

Prospect Inquiry Program of Interest
When the Prospect Inquiry Program of Interest entity is selected, Form Designer exposes the following properties of
the ProspectInquiryProgramEntity class.

Field Table : Column Required Type Description Example

Is
Primary

AmProspectProgram : PrimaryPro-
gram

No Boolean Is this a primary program of
interest?

true

Program AmProspectProgram : AdPro-
gramID

Yes Int32 Program identifier 1

ProspectInquiryProgramEntity

See Multiselect for Single Property Collections.

Forms Builder Version 3.6.1 849 Help Guide

Student
When the Student entity is selected, Form Designer exposes the following properties of the StudentEntity class.

Field Table : Column
Requir-
ed

Type Description Example

Agency Spon-
sor

syStudent : AmA-
gencyID

No Nullable<Int32> Agency iden-
tifier

9

Alien Number syStudent : AlienNo No String Alien number;
MaxLength(9)

123456789

Best Time to
Contact

syStudent :
BestTimeToContact

No String Athletic iden-
tifier;
MaxLength(10)

Morning

Campus syStudent : SyCam-
pusID

Yes Int32 Campus iden-
tifier

10

Citizenship syStudent : AmCit-
izenID

No Nullable<Int32> Citizenship
status identifier

1

City syStudent : City No String City;
MaxLength(25)

Chicago

Country syStudent : SyCoun-
tryID

No Nullable<Int32> Country iden-
tifier

1

County syStudent :
SyCountyID

No Nullable<Int32> County iden-
tifier

87

Current
Employer

syStudent : PlEm-
ployerID

No Nullable<Int32> Current
employer iden-
tifier

62

Date of Birth syStudent : DOB No Nullable
DateTime

Date of Birth 1995-08-21
00:00:00.000

Disabled syStudent : Disabled No String Disabled?
MaxLength(1)

N

Driver
License Num-
ber

syStudent : DrivLic No String Driver's
license num-
ber;
MaxLength(20)

R360-555-87-752-0

Driver
License State

syStudent :
DrivLicState

No String Driver's
license state;
MaxLength(2)

IN

StudentEntity

Forms Builder Version 3.6.1 850 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Email
Address

syStudent : email No String Email address;
MaxLength(50)

test-
er@campusmgmt.com

Employment
Status

syStudent : plEm-
pStatusID

No Nullable<Int32> Employment
status identifier

3

Expected
Start

syStudent : StartDate No Nul-
lable<DateTime>

Expected start
date

2019-08-21
00:00:00.000

First Name syStudent : FirstName No String First name;
MaxLength(25)

Mario

Gender syStudent : AmSexID No Nullable<Int32> Gen-
deridentifier

1

His-
panic/Latino

syStudent : IsHispanic No String Is the student
His-
panic/Latino?;
MaxLength(1)

N

Interest syStudent : AdPro-
gramGroupID

No Nullable<Int32> Program group
of interest

0

Last Name syStudent : LastName No String Last name;
MaxLength(25)

Romanov

Maiden
Name

syStudent :
MaidenName

No String Maiden name;
MaxLength(19)

Jolie

Marital
Status

syStudent : AmMar-
italID

No Nullable<Int32> Marital status
identifier

1

Middle Initial syStudent : MI No String Middle initial;
MaxLength(1)

T

Middle Name syStudent :
MiddleName

No String Middle name;
MaxLength
(100)

Thomas

Mobile Phone
Number

syStudent : MobileNum-
ber

No String Mobile phone
number;
MaxLength(16)

954-333-1212

Nationality syStudent : AmNa-
tionalityID

No Nullable<Int32> Nationality
identifier

21

Nickname syStudent : NickName No String Nickname;
MaxLength(14)

Tom

Other Email
Address

syStudent : OtherEmail No String Other email
address;
MaxLength(50)

mari-
o@campusmgmt.com

Forms Builder Version 3.6.1 851 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Other Phone
Number

syStudent : Other-
Phone

No String Other phone
number;
MaxLength(16)

305-333-1212

Phone Num-
ber

syStudent : Phone No String Phone number;
MaxLength(16)

954-333-1212

Previous Edu-
cation Level

syStudent : AmPre-
vEducID

No Nullable<Int32> Previous edu-
cation level
identifier

4

Program syStudent : AdPro-
gramID

No Nullable<Int32> Program iden-
tifier

8

Shift syStudent : AdShiftID No Nullable<Int32> Shift identifier 1

SMS Pro-
vider

syStudent :
CMSMSSer-
viceProviderID

No Nullable<Int32> SMS service
provider iden-
tifier

2

SSN syStudent : SSN No String Social security
number;
MaxLength(30)

444-77-9999

State syStudent : State No String State;
MaxLength(2)

FL

Street
Address

syStudent : Addr1 No String Street address;
MaxLength
(255)

200 Broadway

Student Num-
ber

syStudent : StuNum No String Student num-
ber;
MaxLength(10)

9333212

Subscribe to
SMS

syStudent : Sub-
scribeToSMS

No Boolean Subscribe to
SMS

true

Suffix syStudent : AmSuffixID No Nullable<Int32> Suffix identifier 1

Title syStudent : AmTitleID No Nullable<Int32> Title identifier 2

Veteran syStudent : Vet No String Veteran?
MaxLength(1)

N

Work Phone
Number

syStudent : WorkPhone No String Work phone
number;
MaxLength(16)

678-543-3330

Forms Builder Version 3.6.1 852 Help Guide

Field Table : Column
Requir-
ed

Type Description Example

Work Phone
Number Ext

syStudent : Workext No String Work phone
number exten-
sion;
MaxLength(10)

2345

ZIP
Code/Postal
Code

syStudent : Zip No String Postal code;
MaxLength(10)

33071

Student Address Changes

The message “You made a change to the address. Do you want to save the old address as another address type?” is
displayed when a student’s address is modified including any of the following fields of the StudentEntity:

l FirstName
l LastName
l MiddleName
l StreetAddress
l City
l State
l PostalCode
l CountryId
l PhoneNumber
l WorkPhoneNumber
l EmailAddress

The message is not a validation message that can be handled in Forms Builder or in Workflow Composer during a
SaveEntity activity for the StudentEntity. To avoid this message after updating a student's address, include an
Assign activity in the workflow with the following assignment:

studentEntity.StudentAddressAssociation = Cmc.Nex-
us.Common.Entities.StudentAddressAssociation.IgnoreInStudentAssociation

Insert the Assign activity just prior to the SaveEntity<StudentEntity> activity.

Forms Builder Version 3.6.1 853 Help Guide

Forms Builder Version 3.6.1 854 Help Guide

Student Advisor
When the Student Advisor entity is selected, Form Designer exposes the following properties of the Stu-
dentAdvisorEntity class.

Field Table : Column Required Type Description Example

Advisor Type SyAdvisorByEnroll : AdvisorModule No String Advisor type; MaxLength(8) SA

Enrollment SyAdvisorByEnroll : AdEnrollID Yes Int32 Enrollment identifier 9

Staff SyAdvisorByEnroll : SyStaffID Yes Int32 Staff identifier 2

Staff Group SyAdvisorByEnroll : SyStaffGroupID Yes Int32 Staff group identifier 3

StudentAdvisorEntity

Forms Builder Version 3.6.1 855 Help Guide

Student Agency Branch
When the Student Agency Branch entity is selected, Form Designer exposes the following properties of the Stu-
dentAgencyBranchEntity class.

Field Table : Column Required Type Description Example

Branch SyStudentAgency : AmA-
gencyBranchID

No Int32 Agency branch iden-
tifier

9

End Date SyStudentAgency :
DateEnd

No Nullable
DateTime

End date 10/31/2017

Function SyStudentAgency : Stu-
dentFunction

No String Student function;
MaxLength(128)

Misc. office
chores

Location SyStudentAgency : Loca-
tion

No String Location; MaxLength
(60)

Visitor Center

Note SyStudentAgency : Com-
ments

No String Notes; MaxLength
(600)

Added during
schedule setup

Primary Billing
Affiliate

SyStudentAgency :
PrimaryBillingAffiliate

No Boolean Is this a primary
billing affiliate?

true

Start Date SyStudentAgency :
DateStart

No Nullable
DateTime

Start Date 10/31/2016

Title SyStudentAgency : Title No String Title; MaxLength(40)

StudentAgencyBranchEntity

Forms Builder Version 3.6.1 856 Help Guide

Student Area of Study
When the Student Area of Study entity is selected, Form Designer exposes the following properties of the Stu-
dentAreaOfStudyEntity class.

Field Table : Column Required Type Description Example

Active AdConcentrationByEnrollment : Active Yes Boolean Is this area of study
active?

true

AreaOf
Study

AdConcentrationByEnrollment :
AdConcentrationID

Yes Int32 Area of study iden-
tifier

7

Drop
Date

AdConcentrationByEnrollment :
DateDropped

No Nullable
DateTime

Date dropped 10/31/2016

GPA AdConcentrationByEnrollment : GPA No Nullable
Decimal

Grade point average 3.5

StudentAreaOfStudyEntity

Forms Builder Version 3.6.1 857 Help Guide

Student Athletic Detail
When the Student Athletic Detail entity is selected, Form Designer exposes the following properties of the Stu-
dentAthleticDetailEntity class.

Field Table : Column Required Type Description Example

Athletic Status Id SsAthleticDetail : SsAth-
leticStatusID

No Int32 Athletic status identifier 5

Last Active Term
Id

SsAthleticDetail : AdTermID No Int32 Last active term identifier 7

Recruitment
Type Id

SsAthleticDetail : SsRecruit-
mentTypeID

No Int32 Recruitment type iden-
tifier

3

Remaining Eli-
gibility

SsAthleticDetail : Remain-
ingEligibility

No Int32 Remaining eligibility iden-
tifier

22

Sport Id SsAthleticDetail : SsSportsID No Int32 Sport identifier 105

StudentAthleticDetailEntity

Forms Builder Version 3.6.1 858 Help Guide

Student Course
When the Student Course entity is selected, Form Designer exposes the following properties of the Stu-
dentCourseEntity class.

Field Table : Column Required Type Description Example

Class Sec-
tion Id

AdEnrollSched :
AdClassSchedID

No Nullable Int32 Class section identifier 15

Course AdEnrollSched : AdCourseID Yes Int32 Course identifier 7

Course
Status

AdEnrollSched : Status No String Course status;
MaxLength(1)

F

Drop Date AdEnrollSched : DropDate No Nullable
DateTime

Drop date 12/31/2016

Letter Grade AdEnrollSched : AdGradeLet-
terCode

No String Letter grade;
MaxLength(8)

A+

Numeric
Grade

AdEnrollSched : Numer-
icGrade

No Nullable
Decimal

Numeric grade 75.00

Start Date AdEnrollSched : StartDate No Nullable
DateTime

Start date 10/31/2016

Term AdEnrollSched : AdTermID No Nullable Int32 Term identifier 1

StudentCourseEntity

Forms Builder Version 3.6.1 859 Help Guide

Student Credit Card
When the Student Credit Card entity is selected, Form Designer exposes the following properties of the Stu-
dentCreditCardEntity class.

Field Table : Column Required Type Description Example

Card Holder Apart-
ment Number

SaCC : AptNumber No String Card holder apartment
number; MaxLength(10)

E-240

Card Holder Name SaCC : CardHolder-
Name

No String Card holder name;
MaxLength(50)

Mario
Romanov

Card Number SaCC : Number No String Credit card number;
MaxLength(20)

1111-1111-
2222-2222

Card Type SaCC :
SaCCTypeID

No Nullable<Int32> Credit card type iden-
tifier

3

City SaCC : CardHolder-
City

No String Card holder city;
MaxLength(30)

Miami

Default SaCC : DefaultCC No Boolean Is this the default card? true

Expiration Date SaCC : Expire No DateTime Expiration date 10/31/2020

First Name SaCC : CardHolder-
Firstname

No String Card holder first name;
MaxLength(50)

Mario

Is Active SaCC : active No Boolean Is this card active? true

Is Primary Pay-
ment

SaCC : PrimaryPay-
ment

No Boolean Is this the primary pay-
ment method?

true

Last Name SaCC : CardHolder-
Lastname

No String Card holder last name;
MaxLength(50)

Romanov

State SaCC : CardHolder-
State

No String Card holder state;
MaxLength(2)

FL

Street Address SaCC : CardHolder-
Addr

No String Card holder street
address; MaxLength(50)

12 Turkey
Lane

Verification Num-
ber

SaCC : Veri-
ficationNumber

No String Verification number;
MaxLength(4)

4321

ZIP Code/Postal
Code

SaCC : CardHolder-
Zip

No String Card holder ZIP/postal
code; MaxLength(15)

33071

StudentCreditCardEntity

Forms Builder Version 3.6.1 860 Help Guide

Student Disability Detail
When the Student Disability Detail entity is selected, Form Designer exposes the following properties of the Stu-
dentDisabilityDetailEntity class.

Field Table : Column Required Type Description Example

Disability Status SsStudentDisabilityDetail :
SsDisabilityStatusID

No Nullable
Int32

Disability status iden-
tifier

5

Is Disabled SsStudentDisabilityDetail :
Disabled

No String Is this student disabled?
MaxLength(1)

Y

Needs Regis-
tration Assist-
ance

SsStudentDisabilityDetail :
RegistrationAssistance

No String Does this student require
registration assistance?

Y

Note SsStudentDisabilityDetail :
Comments

No String Note; MaxLength(2000) Needs trans-
portation assist-
ance

Priority Regis-
tration

SsStudentDisabilityDetail :
PriorityRegistration

No String Is this a priority regis-
tration?MaxLength(1)

Y

StudentDisabilityDetailEntity

Forms Builder Version 3.6.1 861 Help Guide

Student Enrollment Period
When the Student Enrollment Period entity is selected, Form Designer exposes the following properties of the Stu-
dentEnrollmentPeriodEntity class.

Field Table : Column Required Type Description Example

Academic Advisor AdEnroll : AdAd-
visorID

No Nullable
Int32

Academic advisor identifier 8

Applicant Type AdEnroll : AmAp-
plicantTypeID

No Nullable
Int32

Applicant type identifier 2

Application Date AdEnroll :
AppRecDate

No Nullable
DateTime

Application received date 10/31/2016

Campus AdEnroll : SyCam-
pusID

Yes Int32 Campus identifier 1

Enrollment Date AdEnroll : EnrollDate No Nullable
DateTime

Enrollment date 10/31/2016

Enrollment Num-
ber

AdEnroll : StuNum No String Enrollment number;
MaxLength(10)

3214498

Expected Start
Date

AdEnroll :
ExpStartDate

No Nullable
DateTime

Expected start date 10/31/2016

Externship Start
Date

AdEnroll : Extern-
BeginDate

No Nullable
DateTime

Externship start date 10/31/2016

FA Entrance Inter-
view Date

AdEnroll : FaEntrDate No Nullable
DateTime

Financial aid entrance Int32er-
view date

10/31/2016

Graduation Date AdEnroll : GradDate No Nullable
DateTime

Graduation date 10/31/2018

Previous Edu-
cation

AdEnroll : amPre-
vEducID

No Nullable
Int32

Previous education identifier 2

Program AdEnroll : AdPro-
gramID

No Nullable
Int32

Program identifier 23

Program Version AdEnroll : adPro-
gramVersionID

No Nullable
Int32

Program version identifier 10

Program Version
Start Date

AdEnroll : StartDate No Nullable
DateTime

Program version start date
(actual start date)

10/31/2016

Reentry Date AdEnroll :
ReEntryDate

No Nullable
DateTime

Re-entry date 10/31/2016

StudentEnrollmentPeriodEntity

Forms Builder Version 3.6.1 862 Help Guide

Field Table : Column Required Type Description Example

Shift AdEnroll : adShiftID No Nullable
Int32

Shift identifier 1

Start Date AdEnroll :
AdStartDateID

No Nullable
DateTime

Start date identifier 10

Start Term AdEnroll : adTermID No Nullable
Int32

Start term identifier 1

Student See Student.

Forms Builder Version 3.6.1 863 Help Guide

Student Ethnicity
When the Student Ethnicity entity is selected, Form Designer exposes the following properties of the Stu-
dentEthnicityEntity class.

Field Table : Column Required Type Description Example

Ethnicity SyStudentAmRace : EthnicityId Yes Int32 Ethnicity identifier 4

StudentEthnicityEntity

See Multiselect for Single Property Collections.

Forms Builder Version 3.6.1 864 Help Guide

Student Extra Curricular Activity
When the Student Extra Curricular Activity entity is selected, Form Designer exposes the following properties of the
StudentExtraCurricularActivityEntity class.

Field Table : Column Required Type Description Example

Extra Curricular
Activity Id

AmProspectExtraCurr :
AmExtraCurrID

No Int32 Extra curricular activity
identifier

11

Primary AmProspectExtraCurr :
PrimaryExtraCurr

No Boolean Is this a primary extra cur-
ricular activity?

true

StudentExtraCurricularActivityEntity

Forms Builder Version 3.6.1 865 Help Guide

Student Ledger Card Transaction
When the Student Ledger Card Transaction entity is selected, Form Designer exposes the following properties of the
StudentAccountTransactionEntity class.

Field Table : Column Required Type Description Example

Academic
Year

SaTrans : AcademicYear No Decimal Academic year
sequence

1

Amount SaTrans : Amount No Decimal Transaction
amount

120.00

Campus Id SaTrans : SyCampusID No Int32 Campus identifier 1

Check Num-
ber

SaTrans : CheckNo No String Check number;
MaxLength(20)

123412341234

Credit Card SaTrans : SaCCID No Nullable<Int32> Student credit
card identifier

0

Payment
Period

SaTrans : FaStu-
dentAyPaymentPeriodId

No Nullable<Int32> Student academic
year payment
period identifier

1

Payment
Type

SaTrans : PaymentType No String Payment type;
MaxLength(1)

H

Student
Enrollment
Period Id

SaTrans : AdEnrollID No Int32 Student enroll-
ment period iden-
tifier

1

Term SaTrans : AdTermID No Int32 Term identifier 2

Transaction
Code

SaTrans : SaBillCode No String Billing transaction
code; MaxLength
(8)

12341234

Transaction
Date

SaTrans : Date No DateTime Transaction date 10/31/2016

Transaction
Name

SaTrans : Descrip No String Description;
MaxLength(100)

Housing fee

StudentAccountTransactionEntity

Forms Builder Version 3.6.1 866 Help Guide

Student Previous Education
When the Student Previous Education entity is selected, Form Designer exposes the following properties of the Stu-
dentPreviousEducationEntity class.

Field Table : Column Required Type Description Example

Degree AmProspectPrevEduc :
DegreeID

No Nullable
Int32

Degree identifier 67

Enrollment Date AmProspectPrevEduc :
DateOfEnrollment

No Nullable
DateTime

Enrollment date 10/31/2016

GED Awarded
Date

AmProspectPrevEduc :
GEDAwardedDate

No Nullable
DateTime

GED awarded date 10/31/2016

GPA AmProspectPrevEduc :
GPA

No Nullable
Decimal

Grade point average 4.0

Grade Level AmProspectPrevEduc :
AmGradeLevelID

No Nullable
Int32

Grade level identifier 4

Graduated AmProspectPrevEduc :
Graduated

No Boolean Did this student graduate? true

Graduation Date AmProspectPrevEduc :
GraduationDate

No Nullable
DateTime

Graduation date 10/31/2015

Graduation Ses-
sion

AmProspectPrevEduc :
GraduationSession

No String Graduation session;
MaxLength(10)

Spring

Graduation Year AmProspectPrevEduc :
HSGradYear

No String Graduation year;
MaxLength(4)

2015

High School AmProspectPrevEduc :
AmHighSchoolID

No Nullable
Int32

Institution (high school)
identifier

3216

Institution AmProspectPrevEduc :
AmCollegeID

No Nullable
Int32

Institution (college) iden-
tifier

341

Last Date Attended AmProspectPrevEduc :
LastDateAttended

No Nullable
DateTime

Last date attended 10/31/2015

Major AmProspectPrevEduc :
Major

No String Major; MaxLength(100) Biology

Note AmProspectPrevEduc :
Comments

No String Note; MaxLength(2000) Potential
candidate

Online Application
Other College

AmProspectPrevEduc :
OtherCollege

No String Online application other col-
lege; MaxLength(60)

FIU

StudentPreviousEducationEntity

Forms Builder Version 3.6.1 867 Help Guide

Field Table : Column Required Type Description Example

Rank AmProspectPrevEduc :
StudRank

No Nullable
Int32

Student rank 45

School Size AmProspectPrevEduc :
SchoolSize

No Nullable
Int32

School Size 900

Total Credits
Attempted

AmProspectPrevEduc :
CreditsAttempt

No Nullable
Decimal

Total credit hours attemp-
ted

120

Total Grade Points AmProspectPrevEduc :
GradePoints

No Nullable
Decimal

Total grade points 3.5

Total Hours
Attempted

AmProspectPrevEduc :
HoursAttempt

No Decimal Total clock hours attemp-
ted

30.5

Total Number of
Courses

AmProspectPrevEduc :
CoursesTaken

No Nullable
Int32

Total number of courses
taken

4

Total Quality
Points

AmProspectPrevEduc :
QualityPoints

No Nullable
Decimal

Total quality points 4.0

Transcript Type AmProspectPrevEduc :
TranscriptID

No Nullable
Byte

Transcript Type 0

Forms Builder Version 3.6.1 868 Help Guide

Student Relationship Address
When the Student Relationship Address entity is selected, Form Designer exposes the following properties of the Stu-
dentRelationshipAddressEntity class.

Field Table : Column Required Type Description Example

Address Type SyAddress : SyAd-
drTypeID

No Int32 Address type iden-
tifier

2

City SyAddress : City No String City; MaxLength
(25)

Chicago

Country SyAddress : SyCoun-
tryID

No Nullable
Int32

Country identifier 1

County SyAddress :
SyCountyID

No Nullable
Int32

County identifier 88

Email Address SyAddress : Email No String Email address;
MaxLength(50)

mario@campusmgmt.com

Employer
Name

SyAddress :
Employer

No String Employer name;
MaxLength(50)

Campus Management
Corp.

End Date SyAddress : EndDate No Nullable
DateTime

Address end date 10/31/2014

First Name SyAddress :
FirstName

No String First name;
MaxLength(25)

Mario

Is Permanent
Address

SyAddress : Yearly No Boolean Is this a permanent
address?

true

Last Name SyAddress :
LastName

No String Last name;
MaxLength(25)

Romanov

Note SyAddress : Com-
ments

No String Note Verify employer

Phone Number SyAddress : Phone No String Phone number;
MaxLength(16)

123-666-8989

Relation To
Student

SyAddress : Rela-
tionToStudent

No String Relation to student;
MaxLength(30)

Father

Second Phone
Number

SyAddress : Secon-
dPhone

No String Second phone num-
ber; MaxLength(16)

123-666-8990

Ssn SyAddress : SSN No String Social security num-
ber; MaxLength(11)

111-22-3333

StudentRelationshipAddressEntity

Forms Builder Version 3.6.1 869 Help Guide

Field Table : Column Required Type Description Example

Start Date SyAddress :
BeginDate

No Nullable
DateTime

Address start date 10/31/2002

State SyAddress : State No String State; MaxLength
(2)

FL

Street Address SyAddress : Addr1 No String Street address;
MaxLength(255)

123 Turkey Lane

Student Enroll-
ment Period Id

SyAddress : AdEn-
rollID

No Int32 Student enrollment
period identifier

1

Title SyAddress :
AmTitleID

No Nullable
Int32

Title identifier 1

Work Phone
Number

SyAddress :
WorkPhone

No String Work phone num-
ber; MaxLength(16)

954-333-9090

Years At
Address

SyAddress :
YearsAtAddress

No Nullable
Decimal

Years at address 14.5

Years Known
Student

SyAddress :
YearsKnownStudent

No Nullable
Decimal

Years known stu-
dent

22

ZIP Code /
Postal Code

SyAddress : Zip No String ZIP code / postal
code; MaxLength
(20)

33075

Forms Builder Version 3.6.1 870 Help Guide

Student Service Type
When the Student Service Type entity is selected, Form Designer exposes the following properties of the Stu-
dentServiceTypeEntity class.

Field Table : Column Required Type Description Example

Cost SsStudentServiceAssociation :
Amount

No Nullable
Decimal

Cost of service 1500.00

Service Begin
Date

SsStudentServiceAssociation :
BeginDate

No Nullable
DateTime

Service begin date 10/31/2016

Service End Date SsStudentServiceAssociation :
EndDate

No Nullable
DateTime

Service end date 10/31/2017

Service Type SsStudentServiceAssociation :
SsServiceID

Yes Int32 Service type identifier 10

Status SsStudentServiceAssociation :
Status

No Boolean Status true

Student Enroll-
ment Period Id

SsStudentServiceAssociation :
AdEnrollID

No Nullable
Int32

Student enrollment
period identifier>

1

Term SsStudentServiceAssociation :
AdTermID

No Nullable
Int32

Term identifier 1

StudentServiceTypeEntity

Forms Builder Version 3.6.1 871 Help Guide

Student Transfer Credit
When the Student Transfer Credit entity is selected, Form Designer exposes the following properties of the Stu-
dentTransferCreditEntity class.

Field Table : Column Required Type Description Example

Approved
Date

AmCollegeTransfer : DateAp-
proved

No Nullable DateTime Approved date 10/31/2016

Campus
Course

AmCollegeTransfer :
AdCourseID

No Nullable Int32 Campus course
identifier

12

College
Course Code

AmCollegeTransfer : Col-
legeCourseCode

No String College course
code;
MaxLength(16)

ENG101

College
Course
Description

AmCollegeTransfer : Col-
legeCourseDescrip

No String College course
description;
MaxLength(75)

English
composition

College
Name

AmCollegeTransfer : Col-
legeName

No String College name;
MaxLength(60)

FIU

Course AmCollegeTransfer :
AdCourseID

No Nullable<Int32> Course identifier 13

Credits AmCollegeTransfer : Col-
legeCourseCredits

No Decimal Credits 4.00

Credits
Earned

AmCollegeTransfer : Col-
legeCourseCreditsEarned

No Nullable<Decimal> Credits earned 4.00

Credits to
Transfer

AmCollegeTransfer : Cred-
itsEarned

No Decimal Credits to trans-
fer

4.00

Date Com-
pleted

AmCollegeTransfer : Com-
pletionDate

No DateTime College course
date completed

10/31/2015

Date Started AmCollegeTransfer :
StartDate

No Nullable<DateTime> College course
date started

10/31/2014

Grade AmCollegeTransfer : Grade No String Letter Grade;
MaxLength(8)

A-plus

Grade Points AmCollegeTransfer : Col-
legeCourseGradePoints

No Nullable<Decimal> Grade points 4.00

Grade
Received

AmCollegeTransfer : Col-
legeCourseGrade

No String Grade received;
MaxLength(3)

B

StudentTransferCreditEntity

Forms Builder Version 3.6.1 872 Help Guide

Field Table : Column Required Type Description Example

Hours AmCollegeTransfer : Clock-
Hours

No Nullable<Decimal> Clock hours
attempted

50.00

Hours
Attempted

AmCollegeTransfer : Col-
legeCourseHoursAttempt

No Nullable<Decimal> Hours attempted 36.00

Hours
Earned

AmCollegeTransfer : Col-
legeCourseHoursEarned

No Nullable<Decimal> Hours earned 30.00

Hours to
Transfer

AmCollegeTransfer :
HoursEarned

No Nullable<Decimal> Hours to transfer 30.00

Institution AmCollegeTransfer : AmCol-
legeID

No Nullable<Int32> Institution iden-
tifier

4

Term AmCollegeTransfer : AdTer-
mID

No Nullable Int32 Term identifier 1

Transfer
Credit Status

AmCollegeTransfer : AmCol-
legeTransferStatusID

No Nullable Int32 Transfer credit
status identifier

2

Transfer
Credit Type

AmCollegeTransfer : AmTrans-
ferTypeID

No Nullable Int32 Transfer credit
type identifier

1

Forms Builder Version 3.6.1 873 Help Guide

Student Veteran Detail
When the Student Veteran Detail entity is selected, Form Designer exposes the following properties of the Stu-
dentVeteranDetailEntity class.

Field Table : Column Required Type Description Example

Certification
Type

SsStudentVeteranDetail : SsVet-
eranCertificationTypeID

No Nullable
Int32

Veteran Affairs cer-
tification type identifier

4

Last Cer-
tified Term

SsStudentVeteranDetail : AdTermID No Nullable
Int32

Last certified term iden-
tifier

1

StudentVeteranDetailEntity

Forms Builder Version 3.6.1 874 Help Guide

Student_Staff Picture
When the Student_Staff Picture entity is selected, Form Designer exposes the following properties of the Per-
sonPictureEntity class.

Field Table : Column Required Type Description Example

Is Student CmStudentPicture : Student No Boolean Is this a student? true

PersonPictureEntity

	Get Started
	Welcome to Forms Builder Help
	What's New
	Version 3.6.1
	Resolutions

	Version 3.6.0
	Accessibility
	Form Designer
	Sequence Designer
	Settings
	Workflow

	Renderer
	Logging

	Known Limitations
	Installation
	Troubleshooting
	Resources

	Known Limitations
	DateTime Values in PDF
	Breaking Change: Variables no longer allowed as Model Values
	formInstance.UserInfo not populated when using Azure AD
	Import/Export
	Creating Forms
	Payment Country in Credit Card Payment Component
	Using Multiselect for Single Property Collections
	Entities in Show All List Not Fully Defined

	Rendering Sequences
	Accessing the Sequence List

	Managing/Modifying Workflow Definitions
	Student Address Changes

	Miscellaneous
	Limitations for Mobile Devices

	Required Skills
	Prerequisite Knowledge
	Advanced Forms Builder and Workflow Development

	About Forms Builder 3.x
	Database Providers and Authentication
	Workspaces
	Form Designer
	Sequence Designer
	Export/Import
	Internationalization
	Custom Content
	Settings

	Basic Steps

	Installation
	Set Up the Database Environment
	CampusNexus CRM Environment
	Verify the Setup

	CampusNexus Student Environment
	Verify the Setup

	CampusNexus CRM and CampusNexus Student Environment

	CampusNexus CRM Integrations
	Prerequisites
	Integrate Forms Builder 3.x with CampusNexus CRM 11.1 or Later
	Integrate Workflow Composer with CampusNexus CRM 11.1 or Later
	Run an OData Query in the Web Client
	View Lookup Query Results

	API Keys
	Using Earlier Product Versions

	Update Forms Builder URLs (HTTPS or HTTP)
	Apply a New SSL Certificate to STS
	Upgrade Considerations
	Save Default Forms
	Preserve Custom Files

	Best Practices for a Successful Go-Live
	Logging
	Workflows
	Form Data
	DocuSign Sequences
	Application Initialization
	Persisted Workflow Instances

	Designer
	Form Designer
	Form Properties
	Unsaved Changes Dialog
	Form Property Settings Pane

	Fields
	Select the Database Provider
	Find Fields in an Entity
	Search for Fields
	Show All Fields

	Components
	Binding
	SerializableDynamicObject
	Dynamic Objects
	Serializable Objects
	Dictionary Objects

	Calendar/Scheduler
	Creating a Minimal Calendar/Scheduler
	Calendar/Scheduler Initialized by Model Data
	Calendar/Scheduler Initialized by OData Query

	CAPTCHA
	Prerequisites
	Properties

	Checkbox
	Credit Card Payment
	Credit Card Payment Component Properties
	Payment Processing with PayPal
	Payment Processing with ACI
	Payment Processing with IATS

	Date Picker
	Date Time Picker
	DocuSign
	Properties
	Working with the DocuSign Component
	Localization of DocuSign Sequences
	Allow Sequential Signing

	Drop-down List
	Drop-down List with Value List
	Drop-down List with Workflow Initialized List
	Drop-down List with Workflow Initialized List via ExecuteQuery
	Drop-down List with Workflow Initialized List and Template

	Expand/Collapse Panel
	Properties

	File Upload
	Grid
	Grid Property Settings
	Grid Columns Properties
	Grid Initialized via OData Query
	Grid Bound to an Entity
	Grid Bound to Custom Model Data (non-Entity)
	Grid Bound to Results of ExecuteODataQuery
	CRM Grid for One-to-Many Relationships

	HTML
	Properties
	Access Model Values Using JavaScript
	DatePicker Widget
	Set Default Values for Form Fields

	Hyperlink
	Properties

	IFrame
	Properties

	JSON Debug Info
	Properties

	Label
	Properties
	Modify the CSS for the Label

	Locale
	Properties
	Locale Assignment Using Workflow

	Masked Text Box
	Multiselect
	Custom Multiselect with Value List
	Custom Multiselect with Workflow Initialized List

	Numeric Text Box
	Popup
	Properties

	Progress Bar
	Properties
	Use Case: Compare Numeric Data

	Radio Button
	Properties
	Specify a Default Selection
	Create a Validation Item

	Repeater
	Single-select Search
	TabStrip
	Properties
	Create a TabStrip

	Text Box
	Textarea
	Time Picker
	Tooltip
	Properties

	Typeahead
	View Summary
	Properties

	Form Sections
	Style Form Sections Within a Form
	Visible Property
	Layout Enhancements
	Reusable Form Sections
	Create and Save a Form Section
	Edit a Form Section
	Add a Form Section to a Form
	Edit a Form Section in a Form
	Delete a Form Section
	Delete a Form Section from a Form

	School Defined Fields
	Control Property Settings
	Binding Properties
	Notation for Array Variables
	AngularJS Expression Sandbox Security
	Database Tables for Property Settings
	Update of Properties
	Editable Properties

	Multiselect for Single Property Collections
	Ethnicities List
	Programs List

	Custom Styles
	Date Formats
	Example 1: Admissions Deposit - Received Date Field
	Example 2: Date Picker Component

	Date & Time Values and Offsets
	Known Limitations for DateTime Localization

	Delete Forms
	Validation on Form Save
	Boolean Properties
	Model Property
	Validation Errors for School Defined Fields
	Validation Error for Id Property on File Upload
	HTML Syntax Checking
	Indeterminate Flags

	Copy and Paste Controls
	Limitations

	Sequence Designer
	Open the Workflow for a Sequence
	Welcome and Confirmation Forms
	Create a Custom Welcome Form
	Create a Custom Confirmation Form

	Themes
	Configure Themes
	Apply a Theme to a Sequence

	Sequence Identifier
	Assign a Sequence Identifier to a Sequence
	Create a Unique Sequence Identifier

	Delete Sequences
	Delete Persisted Workflow Instances
	Delete Sequence Instances
	Delete All Instances

	Export/Import
	Prerequisites
	Export Sequences
	Import Sequences

	Internationalization
	Definitions
	Internationalization and Localization in Forms Builder
	Culture Scripts for Kendo Components
	Localization of DocuSign Forms

	Steps to Localize Sequences

	Custom Content
	Settings

	Workflows
	Workflow Activities for Forms Builder
	CreateDocuSignRequest
	Properties

	GetAttachments
	Properties

	GetDocuSignConfig
	Properties

	GetDocuSignRecipientStatus
	Multi Route Workflow Example
	Properties

	GetSignedDocument
	Properties

	LookupUser
	Properties

	PrintUrlToPdf
	TranslateText
	Properties

	VerifyCardPayment
	Properties

	WaitForFormBookmark

	State Machine Workflows
	States
	Transitions
	Shared Trigger Transitions

	Multi Route Forms
	Step 1: Create forms for the sequence
	Step 2: Build the sequence
	Step 3: Define transitions in Workflow Composer
	Step 4: Render and test the sequence

	Update a Form After Creation of a Sequence
	Adding an Entity to a Workflow

	Link a Portal Account to a Student Record
	Create, Get, and Save Entity Activities
	CreateEntity<>
	GetEntity<>
	SaveEntity<>
	Best Practice to Prevent DbUpdateConcurrency Exceptions

	Custom Validations
	Single Validation
	Placement of the Custom Validation
	Multiple Validations
	Multiple Validations Items When Processing a Grid

	Passing Values to an End State Form
	Example

	Workflows for CampusNexus CRM
	CampusNexus CRM Events and Objects
	Workflow Activities for CampusNexus CRM

	Grid Using Entity Collection Activities
	Add, Edit, and Save Records in a Collection

	Renderer
	Sequence List
	Redirects for Rendered Sequences
	Anonymous Sequences
	Authenticated Sequences
	Default Navigation Paths within Sequences

	Preview and Update a Form/Sequence
	Renderer Authentication
	Azure AD Authentication
	Azure AD Claims
	Link Sequences to Portal Document Center
	Update Documentation Links in Portal
	Associate Document Statuses with Documents

	Embed a Form on a Website
	Procedure

	Renderer URL Query Parameter
	Syntax
	Pass a URL Query Parameter to a Workflow
	Example

	Pass addonQueryParams via the URL
	Example

	Renderer Media Variables
	Multiple Renderer URLs
	Multiple Renderer URLs for Multiple Student STS Instances
	Add a Custom Theme to Settings
	Add Custom Style Sheets to Renderer
	Associate Sequences with a Custom Theme
	Select Style Sheets Using Workflow Activities

	Renderer Connection Strings

	Use Cases
	Request for Information Form
	Build the Form
	Create a Query in the Web Client
	Add the Query to the Form
	Create a Sequence
	Edit the Workflow
	Submit the RFI Form
	Validate the Data in the Web Client
	Check the Renderer Log

	FERPA Form
	Build the Form
	Create a Sequence
	Edit the Workflow
	Validate the Data in the Web Client
	Submit the Release of Information Form
	Confirm the Updates in the Web Client
	Check the Renderer Log

	Credit Card Payment Form
	Prerequisites
	Create the Form Sequence
	Modify the Workflow
	Test the Rendered Sequence

	DocuSign Forms
	DocuSign Settings
	DocuSign Workflow Sample - Single Signer
	Prerequisites
	Enhancements in Forms Builder 3.6
	Create the Workflow

	DocuSign Workflow Sample - Multiple Signers
	Prerequisites
	Enhancements in Forms Builder 3.6
	Test the Multiple Signer Feature
	Set Up DocuSign Account Preferences
	Create the Workflow

	Move from Test to Production
	Log into DocuSign
	Manage Tab
	Permissions
	API and Integrator Key Information

	Troubleshooting
	Basics
	Log Files
	Enhanced Logging in Forms Builder 3.4 and Later
	Best Practices for Logging
	Location of Log Files
	Forms Builder Logs
	Event Logs

	LogLine/LogObject Activities
	Common Errors and Solutions

	Logging in Azure
	Best Practices for Logging
	LogLine/LogObject Activities

	Troubleshoot Workflows
	Workflow Definition Is Not Displayed
	Workflow Error Indication on Rendered Forms
	Common Workflow Errors
	Validation Messages
	Assign Ids
	SQL Query to Determine the UserName for a Persisted Workflow

	Troubleshoot Fields and Components
	Validation Error on Text Boxes
	Invalid Property Names in Grids

	Troubleshoot Rendered Sequences
	Workflow Error on Rendered Forms
	Server Error - Workflow Aborted
	Forms are Skipped
	DocuSign Document is Blank
	Disappearing Grid Rows on Edit
	Slow Loading of Authenticated Sequences
	Visually Examine Data in Renderer
	Debug - Show Generated JSON Model
	DbUpdateConcurrency Exception
	Access Denied Error

	Troubleshoot DocuSign Forms
	Write the PDF to Disk
	Error Code TAB_OUT_OF_BOUNDS
	DocuSign Document is Blank
	PrintUrlToPdf Times Out
	Hyperlinks Display with Target URL in Parentheses

	HTTP Status Codes
	4xx Client Errors
	5xx Server Errors
	Installation Errors Related to CRM Contracts.dll
	Test Web Services for Designer and Renderer

	Developer Tools
	Console
	DOM Explorer (IE) / Elements (Chrome)
	Fiddler

	Forms Builder & Workflow Troubleshooting Tips & Tricks
	Resources
	MyCampusInsight
	GitHub
	Knowledge Base

	Angular JS
	Angular JS Resources

	Validation Regex Property in Forms Builder
	Understanding OData
	Data Model
	Command Model
	Query Model
	OData Queries

	Rest APIs - Swagger

	Log File Locations & Names
	Forms Builder
	Workflow Saved Events
	Workflow Saving Events
	Web Client
	Workflow Composer
	Azure Storage Explorer
	Tips
	Best Practices for Logging
	LogObject
	LogLine
	CampusLink web.config File
	Reading Log Files

	Service Module Host
	When is Service Module Host Used?
	V1 Contracts
	V2 Contracts
	Forms Builder
	Task Scheduler Occurrence Event

	API Errors
	API Password
	API User Permissions
	API Key – Access Denied Error

	Forms Builder Access Errors
	Web Client URL
	CMCDataServices URL
	Activity Errors

	Configuration Issues
	Packages
	Connection Strings
	Email Configuration

	JSON Debug
	Workflow Execution
	Task Scheduler Occurrence Event
	Prior to CampusNexus Student 20.0
	CampusNexus Student 20.0 and Forward

	Workflow Validation of Business Process in Web Client

	Resources
	OData Queries
	Build Queries Using Views for CampusNexus Student
	Create a View and Export a Query
	Populate the Lookup Query in Form Designer

	Build Queries Using the Data Model
	View the Metadata
	Example: Student Entity Metadata (Excerpt)

	Execute a Query
	Modify a Query
	Change the Sort Order
	Remove the select Option
	Use the $expand Option for Navigation Properties
	Change the $filter Option
	Build a Cascading Query Using AngularJS

	OData Syntax Reference
	Populate the Lookup Query in Form Designer

	Run Queries in Web Client for CampusNexus CRM
	Build Queries for Occupation Insight
	Rendered Form
	Form Layout
	Drop-down List - States
	Drop-down List - Occupations
	Grid - SalariesByState
	Grid - OccupationStateProjections

	Exposed Events
	Cheat Sheets
	GitHub Repositories
	CampusNexus CRM Entities
	Contact
	Lead

	CampusNexus Student Entities
	Admissions Deposit
	Applicant Areas of Study
	Applicants
	Document
	Document Transcript Request
	ISIR Verification
	Pending Applicant
	Pending Applicant Area of Study
	Pending Applicant Ethnicity
	Pending Applicant Previous Education
	Pending Prospect Inquiry
	Pending Prospect Inquiry Ethnicity
	Prospect Inquiry
	Prospect Inquiry Lead Source
	Prospect Inquiry Program of Interest
	Student
	Student Address Changes

	Student Advisor
	Student Agency Branch
	Student Area of Study
	Student Athletic Detail
	Student Course
	Student Credit Card
	Student Disability Detail
	Student Enrollment Period
	Student Ethnicity
	Student Extra Curricular Activity
	Student Ledger Card Transaction
	Student Previous Education
	Student Relationship Address
	Student Service Type
	Student Transfer Credit
	Student Veteran Detail
	Student_Staff Picture

